Monday, June 10, 2019

Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 32

a.) Estimate the value of $\lim \limits_{x \to \infty} f(x)$ using the graph of $f(x) = \sqrt{3x^2 + 8x + 6} - \sqrt{3x^2 + 3x + 1}$.







Referring to the graph, the limit of $f(x)$ approaches $1.4$.

b.) Construct a table of values of $f(x)$ to estimate the limit


$\begin{array}{|c|c|}
\hline\\
x & f(x) \\
\hline\\
10 & 1.4535 \\
\hline\\
100 & 1.4446 \\
\hline\\
1000 & 1.4435 \\
\hline\\
10000 & 1.4434 \\
\hline\\
100000 & 1.4434\\
\hline
\end{array}
$


Referring to the table, the limit of $f(x)$ seems to have a value of $1.4434$.

c.) Determine the exact value of the limit



$
\begin{equation}
\begin{aligned}

\lim_{x \to \infty} f(x) =& \lim_{x \to \infty} \sqrt{3x^2 + 8x + 6} - \sqrt{3x^2 + 3x + 1}
\\
\\
=& \lim_{x \to \infty} \sqrt{3x^2 + 8x + 6} - \sqrt{3x^2 + 3x + 1} \cdot \frac{\sqrt{3x^2 + 8x + 6} + \sqrt{3x^2 + 3x + 1}}{\sqrt{3x^2 + 8x + 6} + \sqrt{3x^2 + 3x + 1}}
\\
\\
=& \lim_{x \to \infty} \frac{3x^2 + 8x + 6 - (3x^2 + 3x + 1)}{\sqrt{3x^2 + 8x + 6} + \sqrt{3x^2 + 3x + 1}}
\\
\\
=& \lim_{x \to \infty} \frac{\cancel{3x^2} + 8x + 6 - \cancel{3x^2} - 3x - 1}{\sqrt{3x^2 + 8x + 6} + \sqrt{3x^2 + 3x + 1}}
\\
\\
=& \lim_{x \to \infty} \frac{5x + 5}{\sqrt{3x^2 + 8x + 6} + \sqrt{3x^2 + 3x + 1}} \cdot \frac{\frac{1}{x}}{\frac{1}{\sqrt{x^2}}}
\\
\\
=& \lim_{x \to \infty} \frac{\displaystyle \frac{5 \cancel{x}}{\cancel{x}} + \frac{5}{x}}{\displaystyle \sqrt{\frac{3 \cancel{x^2}}{\cancel{x^2}}} + \frac{8x}{x^2} + \frac{6}{x^2} } + \sqrt{\frac{3\cancel{x^2}}{\cancel{x^2}} + \frac{3x}{x^2} + \frac{1}{x^2}}
\\
\\
=& \lim_{x \to \infty} \frac{\displaystyle 5 + \frac{5}{x}}{\displaystyle \sqrt{3 + \frac{8}{x} + \frac{6}{x^2}}}
\\
\\
=& \lim_{x \to \infty} \frac{\displaystyle 5 + \frac{5}{x}}{\displaystyle \sqrt{3 + \frac{8}{x}} + \frac{6}{x^2} + \sqrt{3 + \frac{3}{x} + \frac{3}{x} + \frac{1}{x^2}}}
\\
\\
=& \frac{\displaystyle \lim_{x \to \infty} \left( 5 + \frac{5}{x} \right) }{\displaystyle \lim_{x \to \infty} \left( \sqrt{3 + \frac{8}{x} + \frac{6}{x^2}} + \sqrt{3 + \frac{3}{x} + \frac{1}{x^2}} \right) }
\\
\\
=& \frac{\displaystyle 5 + \lim_{x \to \infty} \frac{5}{x}}{\displaystyle \sqrt{3 + \lim_{x \to \infty} \frac{8}{x} + \lim_{x \to \infty} \frac{6}{x^2}} + \sqrt{3 + \lim_{x \to \infty} \frac{3}{x} + \lim_{x \to \infty} \frac{1}{x^2} } }
\\
\\
=& \frac{5 + 0}{\sqrt{3 + 0 + 0} + \sqrt{3 + 0 + 0}}
\\
\\
=& \frac{5}{\sqrt{3} + \sqrt{3}}
\\
\\
=& \frac{5}{2 \sqrt{3}} \text{ or } 1.4434


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...