Friday, June 21, 2019

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 33

At what rate is $R$ changing when $R_1 = 80 \Omega$ and $R_2 = 100 \Omega$?
$\displaystyle \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

$
\begin{equation}
\begin{aligned}
\text{Given: } \frac{dR_1}{dt} &= 0.30 \frac{\Omega}{s} \\
\\
\frac{dR_1}{dt} &= 0.20 \frac{\Omega}{s}\\
\\

\end{aligned}
\end{equation}
$


Required: $\displaystyle \frac{dR}{dt}$ when $R_1 = 80 \Omega$ and $R_2 = 100 \Omega$



$\displaystyle \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \qquad \Longleftarrow \text{ Equation 1}$
By getting the derivative with respect to time


$
\begin{equation}
\begin{aligned}
\frac{-\frac{dR}{dt}}{R^2} &= \frac{-\frac{dR_1}{dt}}{R_1^2} + \frac{-\frac{dR_2}{dt}}{R_2^2}\\
\\
- \frac{dR}{dt} &= R^2 \left[\frac{-\frac{dR_1}{dt}}{R_1^2} + \frac{-\frac{dR_2}{dt}}{R_2^2} \right]
\end{aligned}
\end{equation}
$


We will use Equation 1 to get the value of $R$

$
\begin{equation}
\begin{aligned}
\frac{1}{R} &= \frac{1}{80}+ \frac{1}{100}\\
\\
R &= \frac{400}{9} \Omega
\end{aligned}
\end{equation}
$


Now, to solve for the required

$
\begin{equation}
\begin{aligned}
-\frac{dR}{dt} &= \left( \frac{400}{9}\right)^2 \left[ \frac{-0.30}{(80)^2} + \frac{-0.20}{(100)^2}\right]
\end{aligned}
\end{equation}\\
\boxed{\displaystyle \frac{dR}{dt} = \frac{107}{810} \frac{\Omega}{s}}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...