Tuesday, June 18, 2019

Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 10

Show that $\cos h x - \sin h x = e^{-x}$

Solving for the left-hand side of the equation

Using Hyperbolic Function


$
\begin{equation}
\begin{aligned}

& \cos h x = \frac{e^x + e^{-x}}{2} \text{ and } \sin h x = \frac{e^x - e^{-x}}{2}
\\
\\
& \frac{e^x + e^{-x}}{2} - \left( \frac{e^x - e^{-x}}{2} \right) = e^{-x}
\\
\\
& \frac{e^x + e^{-x} - (e^x - e^{-x})}{2} = e^{-x}
\\
\\
& \frac{\cancel{e^x} + e^{-x} - \cancel{e^x} + e^{-x}}{2} = e^{-x}
\\
\\
& \frac{\cancel{2} e^{-x}}{\cancel{2}} = e^{-x}
\\
\\
& e^{-x} = e^{-x}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...