Wednesday, December 21, 2011

Beginning Algebra With Applications, Chapter 3, 3.2, Section 3.2, Problem 68

Solve $\displaystyle \frac{2}{3} = \frac{3}{4} - \frac{1}{2}y$ and check.


$
\begin{equation}
\begin{aligned}

\frac{2}{3} - \frac{3}{4} =& \frac{3}{4} - \frac{3}{4} - \frac{1}{2} y
&& \text{Subtract } \frac{3}{4}
\\
\\
\frac{-1}{12} =& \frac{-1}{2} y
&& \text{Simplify}
\\
\\
-2 \left( \frac{-1}{12} \right) =& \left( \frac{-1}{2} y \right) -2
&& \text{Multiply both sides by } -2
\\
\\
\frac{1}{6} =& y
&&

\end{aligned}
\end{equation}
$


Checking:


$
\begin{equation}
\begin{aligned}

\frac{2}{3} =& \frac{3}{4} - \frac{1}{2} \left( \frac{1}{6} \right)
&& \text{Substitute } y = \frac{1}{6}
\\
\\
\frac{2}{3} =& \frac{3}{4} - \frac{1}{12}
&& \text{Simplify}
\\
\\
\frac{2}{3} =& \frac{2}{3}
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...