Saturday, December 24, 2011

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 28

Determine $y'$ and $y''$ of $\displaystyle y = \frac{\ln x}{x^2}$
Solving for $y'$

$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} \left( \frac{\ln x}{x^2} \right)\\
\\
y' &= \frac{x^2 \frac{d}{dx} (\ln x) - \ln x \frac{d}{dx} (x^2) }{(x^2)^2}\\
\\
y' &= \frac{x^2 \left( \frac{1}{x} \right) - \ln x \cdot 2x }{x^4}\\
\\
y' &= \frac{x - 2x \ln x}{x^4}\\
\\
y' &= \frac{x(1-2 \ln x )}{x^4}\\
\\
y' &= \frac{1-2 \ln x }{x^3}
\end{aligned}
\end{equation}
$


Solving for $y''$

$
\begin{equation}
\begin{aligned}
y'' &= \frac{d}{dx} \left( \frac{1-2 \ln x}{x^3} \right)\\
\\
y'' &= \frac{x^3 \frac{d}{dx}(1- 2 \ln x) - (1 -2 \ln x) \frac{d}{dx} (x^3)}{(x^3)^2}\\
\\
y'' &= \frac{(x^3)\left( \frac{-2}{x} \right)-(1-2\ln x)(3x^2) }{x^6}\\
\\
y'' &= \frac{-2x^2 - 3x^2 + 6x^2 \ln x}{x^6}\\
\\
y'' &= \frac{-5x^2 + 6x^2 \ln x}{x^6}\\
\\
y'' &= \frac{x^2(6 \ln x - 5)}{x^6}\\
\\
y'' &= \frac{6 \ln - 5}{x^4}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...