Thursday, December 22, 2011

Single Variable Calculus, Chapter 4, 4.3, Section 4.3, Problem 44

a.) Estimate the maximum and minimum values by using the graph of $f(x) = x+ 2 \cos x, \quad 0 \leq x \leq 2\pi$. Then, find the exact values.
b.) Estimate the value of $x$ at which $f$ increases most rapidly. Then determine the exact value.

a.)


Based from the graph, the local maximum is $f(0.50) \approx 2.20$ and local minimum $f(2.60) \approx 0.90$

To find for the exact values, we set $f'(x) = 0$ and some for the critical numbers

$
\begin{equation}
\begin{aligned}
\text{if } f(x) &= x + 2 \cos x, \quad \text{then}\\
\\
f'(x) &= 1 - 2 \sin x \\
\\
\\
\text{when } f'(x) &= 0 \\
\\
0 &= 1 - 2 \sin x \\
\\
\sin x &= \frac{1}{2}\\
\\
x &= \sin^{-1} \left[ \frac{1}{2} \right]\\
\\
x &= \frac{\pi}{6} + 2 \pi n \qquad \text{ or } \qquad x = \frac{5\pi}{6}+2\pi n; \quad \text{where } n \text{ is any integer }

\end{aligned}
\end{equation}
$

For the interval of $0 \leq x \leq 2 \pi$, the critical number are $\displaystyle x = \frac{\pi}{6} \text{ and } x = \frac{5\pi}{6}$

$
\begin{equation}
\begin{aligned}
\text{so when } x &= \frac{\pi}{6}, &&& \text{when } x &= \frac{5\pi}{6},\\
\\
f \left( \frac{\pi}{6} \right) & = \frac{\pi}{6} + 2 \cos f \left( \frac{\pi}{6} \right) &&& f \left( \frac{5\pi}{6} \right) &= \frac{5\pi}{6} + 2 \cos \left( \frac{5\pi}{6} \right)\\
\\
f \left( \frac{\pi}{6} \right) & = 2.2556 &&& f \left( \frac{5\pi}{6} \right) &= 0.8859
\end{aligned}
\end{equation}
$

Therefore, the exact value of local maximum is $\displaystyle f \left( \frac{\pi}{6} \right) = 2.2556$. While the local minimum is $\displaystyle f \left( \frac{5\pi}{6} \right) = 0.8859$


Based from the graph, the value of $x$ which $f$ increases rapidly is somewhere in $\displaystyle \left( \frac{5\pi}{4}, \frac{7\pi}{4} \right)$
To solve for the exact value, we set $f''(x) = 0$ and determine the inflection points.

$
\begin{equation}
\begin{aligned}
\text{so if } f'(x) &= 1 - 2 \sin x, \text{ then}\\
\\
f''(x) &= - 2 \cos x\\
\\
\\
\text{when } f''(x) &= 2 \cos x,\\
\\
0 &= -2 \cos x\\
\\
\cos x &= 0 \\
\\
x &= \cos^{-1} [0]\\
\\
x &= \frac{\pi}{2} + 2 \pi n \qquad \text{or} \qquad x = \frac{\pi}{2} + 2 \pi n \text{ ;where } n \text{ is any integer}
\end{aligned}
\end{equation}
$


For interval $0 \leq x \leq 2 \pi$, the inflection points are...
$\displaystyle x = \frac{\pi}{2} \text{ and } x = \frac{3\pi}{2}$

$
\begin{equation}
\begin{aligned}
\text{so when } x &= \frac{\pi}{2} &&& \text{when } x &= \frac{3\pi}{2} ,\\
\\
f' \left( \frac{\pi}{2} \right) &= 1 - 2 \sin \left( \frac{\pi}{2} \right) &&& f'\left( \frac{3\pi}{2} \right) &= 1 - 2 \sin \left( \frac{3\pi}{2} \right) \\
\\
f' \left( \frac{\pi}{2} \right) &= -1 &&& f'\left( \frac{3\pi}{2} \right) &= 3
\end{aligned}
\end{equation}
$

Therefore, the function increases most rapidly at $\displaystyle x = \frac{3\pi}{2}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...