Friday, December 23, 2011

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 24

Differentiate $\displaystyle y = \frac{3x^4 + 2x}{x^3 - 1}$

By applying Long Division first before differentiating, we get



$\displaystyle y = \frac{3x^4 + 2x}{x^3 -1} = 3x + \frac{5x}{x^3 - 1}$


Then,

$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} \left[ 3x + \frac{5x}{x^3 - 1} \right] = \frac{d}{dx} (3x) + \frac{d}{dx} \left( \frac{5x}{x^3 - 1} \right)\\
\\
&= 3 + \left[ \frac{(x^3 - 1) \cdot \frac{d}{dx} (5x) - (5x) \cdot \frac{d}{dx}(x^3 - 1) }{(x^3 - 1)^2} \right]\\
\\
&= 3 + \left[ \frac{(x^3 - 1)(5) - (5x) (3x^2) }{(x^3 - 1)^2} \right]\\
\\
&= 3 + \left[ \frac{5x^3 - 5 - 15x^3}{(x^3 - 1)^2} \right]\\
\\
&= 3 + \left[ \frac{-10x^3 - 5}{(x^3 - 1)^2} \right]\\
\\
&= \frac{3(x^3 - 1)^2 - 10x^3 - 5}{(x^3 - 1)^2}\\
\\
&= \frac{3\left[(x^3)^2 - 2(x^3)(1) + (-1)^2 \right] -10x^3 -5 }{(x^3 - 1)^2}\\
\\
&= \frac{3 \left[ x^6 - 2x^3 + 1 \right] - 10x^3 - 5}{(x^3 - 1)^2}\\
\\
&= \frac{3x^6 - 6x^3 + 3 - 10x^3 - 5}{(x^3 - 1)^2}\\
\\
&= \frac{3x^6 - 16x^3 - 2}{(x^3 - 1)^2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...