Thursday, January 19, 2012

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 30

You need to perform the following substitution to solve the integral sin t = u => cos t dt = du => t = arcsin u
int_0^(pi/2) (cos t dt)/(sqrt(1 + sin^2 t)) = int_(u_1)^(u_2) (du)/(sqrt(1 + u^2) = ln(u + sqrt(u^2+1))|_(u_1)^(u_2)
Replacing back u for t yields:
int_0^(pi/2) (cos t dt)/(sqrt(1 + sin^2 t)) = ln(sin t + sqrt(1 + sin^2 t))|_0^(pi/2)
int_0^(pi/2) (cos t dt)/(sqrt(1 + sin^2 t)) = ln(sin (pi/2) + sqrt(1 + sin^2 (pi/2))) - ln(sin (0) + sqrt(1 + sin^2 0))
int_0^(pi/2) (cos t dt)/(sqrt(1 + sin^2 t)) = ln(1 + sqrt2) - ln(0 + 1)
int_0^(pi/2) (cos t dt)/(sqrt(1 + sin^2 t)) = ln(1 + sqrt2) - ln 1
int_0^(pi/2) (cos t dt)/(sqrt(1 + sin^2 t)) = ln(1 + sqrt2) - 0
int_0^(pi/2) (cos t dt)/(sqrt(1 + sin^2 t)) = ln(1 + sqrt2)
Hence, evaluating the definite integral yields int_0^(pi/2) (cos t dt)/(sqrt(1 + sin^2 t)) = ln(1 + sqrt2).

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...