Wednesday, January 25, 2012

Calculus of a Single Variable, Chapter 5, 5.8, Section 5.8, Problem 88

The given problem (dy)/(dx) =1/((x-1)sqrt(-4x^2+8x+1)) is in form of a first order ordinary differential equation. To evaluate this, we may follow the variable separable differential equation: N(y) dy= M(x)dx .
dy=1/((x-1)sqrt(-4x^2+8x+1)) dx
Apply direct integration on both sides:
int dy=int 1/((x-1)sqrt(-4x^2+8x+1)) dx
For the left side, we apply basic integration property: int (dy)=y.
For the right side, we apply several substitutions to simplify it.
Let u =(x-1) then x=u+1 and du=dx . The integral becomes:
int 1/((u)sqrt(-4x^2+8x+1)) dx =int 1/(usqrt(-4(u+1)^2+8(u+1)+1)) du
=int 1/(usqrt(-4(u^2+2u+1)+8u+8+1)) du
=int 1/(usqrt(-4u^2-8u-4+8u+8+1)) du
=int 1/(usqrt(-4u^2+5)) du
Let v = u^2 then dv = 2u du or (dv)/(2u)=du . The integral becomes:
int 1/(usqrt(-4u^2+5)) du=int 1/(usqrt(-4v+5)) *(dv)/(2u)
=int (dv)/(2u^2sqrt(-4v+5))
=int (dv)/(2vsqrt(-4v+5))
Apply the basic integration property: int c*f(x)dx= c int f(x) dx .
int (dv)/(2vsqrt(-4v+5)) =(1/2)int (dv)/(vsqrt(-4v+5))
Let w= sqrt(-4v+5) then v= (5-w^2)/4 and dw=-2/sqrt(-4v+5)dv or
(dw)/(-2)=1/sqrt(-4v+5)dv
The integral becomes:
(1/2)int (dv)/(vsqrt(-4v+5)) =(1/2)int 1/v*(dv)/sqrt(-4v+5)
=(1/2)int 1/((5-w^2)/4)*(dw)/(-2)
=(1/2)int 1*4/(5-w^2)*(dw)/(-2)
=(1/2)int -2/(5-w^2)dw
=(1/2)*-2 int 1/(5-w^2)dw
=(-1) int 1/(5-w^2)dw
Apply basic integration formula for inverse hyperbolic tangent function:
int (du)/(a^2-u^2)=(1/a)arctanh(u/a)+C
Then, with corresponding values as: a^2=5 and u^2=u^2 , we get: a=sqrt(5) and u=w
(-1) int 1/(5-w^2)dw = -1/sqrt(5) arctanh(w/sqrt(5))+C
Recall w=sqrt(-4v+5) and v=u^2 then w =sqrt(-4u^2+5).
Plug-in u=(x-1) on w =sqrt(-4u^2+5) , we get:
w =sqrt(-4(x-1)^2+5)
w=sqrt(-4(x^2-2x+1)+5)
w=sqrt(-4x^2+8x-4+5)
w=sqrt(-4x^2+8x+1)

Plug-in w=sqrt(-4x^2+8x+1) on -1/sqrt(5) arctanh(w/sqrt(5))+C , we get:
int 1/((x-1)sqrt(-4x^2+8x+1)) dx=1/sqrt(5)arctanh(sqrt(-4x^2+8x+1)/sqrt(5))+C
=-1/sqrt(5) arctanh(sqrt(-4x^2+8x+1)/5)+C
Combining the results from both sides, we get the general solution of the differential equation as:
y=-1/sqrt(5) arctanh(sqrt(-4x^2+8x+1)/5)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...