Tuesday, January 24, 2012

int e^(3x)/(e^x+e^(3x)) dx

int e^(3x)/(e^x+e^(3x))dx
To solve this, let's simplify first the integrand.
=int e^(3x)/(e^x(1+e^(2x)))dx
= int (e^x * e^(2x))/(e^x(1+e^(2x)))dx
= int e^(2x)/(1+e^(2x))dx
Then, apply u-substitution method. 
u=1+e^(2x)
du = e^(2x)*2dx
(du)/2=e^(2x)dx
Expressing the integral in terms of u, it becomes:
= int 1/(1+e^(2x)) * e^(2x)dx
= int 1/u * (du)/2
= 1/2 int 1/u du
=1/2ln|u|+ C
And, substitute back u = 1+e^(2x) .
=1/2ln|1+e^(2x)|+C
 
Therefore, int e^(3x)/(e^x+e^(3x))dx = 1/2ln|1+e^(2x)| + C .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...