Thursday, January 19, 2012

Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 50

a.) Find the number $a$ such that the line $x = a$ bisects the area under the curve $\displaystyle y = \frac{1}{x^2}$, $1 \leq x \leq 4$.
b.) Find the number $b$ such that the line $y = b$ bisects the area in part(a)

a.) Since the area is divided into two parts, we assume that these two regions are equal, So...


$
\begin{equation}
\begin{aligned}
\int^a_1 \frac{1}{x^2} dx &= \int^4_a \frac{1}{x^2} dx\\
\\
\int^a_1 x^{-2} dx &= \int^4_a x^{-2} dx\\
\\
\left[ \frac{x^{-1}}{01} \right]^a_1 &= \left[ \frac{x^{-1}}{-1} \right]^4_a\\
\\
\frac{-1}{a} - \left[ \frac{-1}{1} \right] &= \frac{-1}{4} - \left[ \frac{-1}{a} \right]\\
\\
\frac{-1}{a} + 1 &= \frac{-1}{4} + \frac{1}{a}\\
\\
1 + \frac{1}{4} &= \frac{-1}{4} + \frac{1}{a}\\
\\
\frac{5}{4} &= \frac{2}{a}\\
\\
a &= \frac{8}{5}
\end{aligned}
\end{equation}
$


b.) The area in part(a) is $\displaystyle \int^4_1 \left(\frac{1}{x^2} \right)dx = \frac{3}{4}$ square units
Thus, the area of each sub divided region is $\displaystyle \frac{\frac{3}{4}}{2} = \frac{3}{8}$ square units.
We can use horizontal strip to evaluate the upper region to...

$
\begin{equation}
\begin{aligned}
\int^{y_2}_{y_1} \left(x_{\text{right}} - x_{\text{left}} \right) dy &= \frac{3}{8}\\
\\
\int^1_b \left( \frac{1}{\sqrt{y}} - 1 \right) dy &= \frac{3}{8}\\
\\
\left[ \frac{y^{\frac{1}{2}}}{\frac{1}{2}}\right]^1_b &= \frac{3}{8}\\
\\
2(1)^{\frac{1}{2}} - 1 - \left[ 2(b)^{\frac{1}{2}} - b\right] = \frac{3}{8}
\end{aligned}
\end{equation}
$

By factoring

$
\begin{equation}
\begin{aligned}
(\sqrt{b} -1 )^2 &= \frac{3}{8}\\
\\
\sqrt{b} &= \pm \sqrt{\frac{b}{8}} + 1\\
\\
b &= \left( \pm \sqrt{\frac{3}{8}} + 1 \right)^2
\end{aligned}
\end{equation}
$


We have, $b = 2.5997$ and $b = 0.1503$
We got two values of $b$. However, $b= 2.5997$ is outside the interval. Therefore, we choose $b = 0.1503$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...