Monday, January 30, 2012

Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 16

Show that $\displaystyle \cos h 2x = \cos h^2 x + \sin h^2 x$

Solving for the left-hand side of the equation

Using Hyperbolic Function


$
\begin{equation}
\begin{aligned}

\cos hx =& \frac{e^x + e^{-x}}{2}
\\
\\
\cos h 2 x =& \frac{e^{2x} + e^{-2x}}{2}
\\
\\
\cos h 2 x =& \frac{e^x e^x + e^{-x} e^{-x}}{2}

\end{aligned}
\end{equation}
$


Using Hyperbolic Identities


$
\begin{equation}
\begin{aligned}

& \cos hx + \sin hx = e^x \text{ and } \cos hx - \sin hx = e^{-x}
\\
\\
& \cos h 2 x = \frac{(\cos hx + \sin hx)(\cos hx + \sin hx) + (\cos hx - \sin hx)(\cos hx - \sin hx)}{2}
\\
\\
& \cos h 2 x = \frac{(\cos hx + \sin hx)^2 + (\cos hx - \sin hx)^2}{2}
\\
\\
& \cos h 2 x = \frac{\cos h^2 x + \cancel{2 \cos hx \sin hx} + \sin h^2 x + \cos h^2 x - \cancel{2 \cos hx \sin hx} + \sin h^2 x}{2}
\\
\\
& \cos h 2 x = \frac{2 \cos h^2 x + 2 \sin h^2 x}{2}
\\
\\
& \cos h 2 x = \frac{\cancel{2} (\cos h^2 x + \sin h^2 x)}{\cancel{2}}
\\
\\
& \cos h 2 x = \cos h^2 x + \sin h^2 x



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...