Wednesday, February 1, 2012

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 14

Find the complete solution of the system
$
\left\{
\begin{array}{ccccc}
x & -y & & = & 1 \\
x & +y & +2z & = & 3 \\
x & -3y & -2z & = & -1
\end{array}
\right.
$
using Gauss-Jordan Elimination.

We transform the system into reduced row-echelon form

$\displaystyle \left[
\begin{array}{cccc}
1 & -1 & 0 & 1 \\
1 & 1 & 2 & 3 \\
1 & -3 & -2 & -1
\end{array}
\right]$

$R_2 - R_1 \to R_2$

$\displaystyle \left[
\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 2 & 2 & 2 \\
1 & -3 & -2 & -1
\end{array}
\right]$

$R_3 - R_1 \to R_3$

$\displaystyle \left[
\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 2 & 2 & 2 \\
0 & -2 & -2 & -2
\end{array}
\right]$

$\displaystyle \frac{1}{2} R_2$

$\displaystyle \left[
\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & -2 & -2 & -2
\end{array}
\right]$

$R_3 + 2 R_2 \to R_3$

$\displaystyle \left[
\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}
\right]$

$R_1 + R_2 \to R_1$

$\displaystyle \left[
\begin{array}{cccc}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}
\right]
$

This is in reduced row echelon form. Since the last row represents the equation $0=0$, we may discard it. So the last matrix corresponds to the system


$
\left\{
\begin{array}{ccccc}
x & & +z & = & 2 \\
& y & +z & = & 1
\end{array}
\right.
$


To obtain the complete solution, we let $t$ represents any real number and we express $x,y,z$ in terms of $t$:


$
\begin{equation}
\begin{aligned}

x =& 2-t
\\
y =& 1-t
\\
z =& t

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...