Sunday, April 22, 2012

College Algebra, Chapter 7, 7.1, Section 7.1, Problem 20

The system of linear equations

$
\left\{
\begin{equation}
\begin{aligned}

x + y + 6z =& 3
\\
x + y + 3z =& 3
\\
x + 2y + 4z =& 7

\end{aligned}
\end{equation}
\right.
$
has a unique solution.

Determine the solution using Gaussian Elimination or Gauss-Jordan Elimination.

We use Gauss-Jordan Elimination

Augmented Matrix

$\left[ \begin{array}{cccc}
1 & 1 & 6 & 3 \\
1 & 1 & 3 & 3 \\
1 & 2 & 4 & 7
\end{array} \right]$

$R_2 - R_3 \to R_2$


$\left[ \begin{array}{cccc}
1 & 1 & 6 & 3 \\
0 & -1 & -1 & -4 \\
1 & 2 & 4 & 7
\end{array} \right]$

$R_3 - R_1 \to R_3$

$\left[ \begin{array}{cccc}
1 & 1 & 6 & 3 \\
0 & -1 & -1 & -4 \\
0 & 1 & -2 & 4
\end{array} \right]$

$R_3 + R_2 \to R_3$

$\left[ \begin{array}{cccc}
1 & 1 & 6 & 3 \\
0 & -1 & -1 & -4 \\
0 & 0 & -3 & 0
\end{array} \right]$

$\displaystyle \frac{-1}{3} R_3$

$\left[ \begin{array}{cccc}
1 & 1 & 6 & 3 \\
0 & -1 & -1 & -4 \\
0 & 0 & 1 & 0
\end{array} \right]$

$-R_2$

$\left[ \begin{array}{cccc}
1 & 1 & 6 & 3 \\
0 & 1 & 1 & 4 \\
0 & 0 & 1 & 0
\end{array} \right]$

$R_1 - R_2 \to R_1$

$\left[ \begin{array}{cccc}
1 & 0 & 5 & -1 \\
0 & 1 & 1 & 4 \\
0 & 0 & 1 & 0
\end{array} \right]$

$R_1 - 5R_3 \to R_1$

$\left[ \begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 4 \\
0 & 0 & 1 & 0
\end{array} \right]$

$R_2 - R_3 \to R_2$

$\left[ \begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 0
\end{array} \right]$

We now have an equivalent matrix in reduced row-echelon form and the corresponding system of equations is


$
\left\{
\begin{equation}
\begin{aligned}

x =& -1
\\
y =& 4
\\
z =& 0

\end{aligned}
\end{equation}
\right.
$


Hence we immediately arrive at the solution $(-1,4,0)$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...