Wednesday, April 18, 2012

f(x)=1/(1-3x),c=0 Find a power series for the function, centered at c and determine the interval of convergence.

A power series centered at c=0 is follows the formula:
sum_(n=0)^oo a_nx^n = a_0+a_1x+a_2x^2+a_3x^3+...
The given function f(x)= 1/(1-3x)  resembles the power series:
(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!) x ^n
or
(1+x)^k = 1+kx +(k(k-1))/(2!)x^2+(k(k-1)(k-2))/(3!)x^3+(k(k-1)(k-2)(k-3))/(4!)x^4+...
To evaluate the given function f(x) =1/(1-3x) centered at c=0 , we may apply Law of exponents: 1/x^n = x^(-n) .
f(x)= (1-3x) ^(-1)
Apply the aforementioned formula for power series on  (1-3x) ^(-1) or (1+(-3x))^(-1) , we may replace "x " with "-3x " and "k" with "-1 ". We let:
(1+(-3x))^(-1) = sum_(n=0)^oo (-1(-1-1)(-1-2)...(-1-n+1))/(n!) (-3x) ^n
=sum_(n=0)^oo (-1(-2)(-3)...(-1-n+1))/(n!)(-3)^nx ^n
=1+(-1)(-3)^1x +(-1(-2))/(2!)(-3)^2x ^2+(-1(-2)(-3))/(3!)(-3)^3x ^3+(-1(-2)(-3)(-4))/(4!)(-3)^4x ^4+...
=1+3x +2/2*9*x ^2+(-6)/6(-27)x ^3+24/24*81*x ^4+...
=1+3x +9x ^2+27x ^3+81x ^4+...
= sum_(n=0)^oo (3x)^n
To determine the interval of convergence, we may apply geometric series test wherein the series sum_(n=0)^oo a*r^n  is convergent if |r|lt1 or -1 ltrlt 1 . If |r|gt=1 then the geometric series diverges.
By comparing sum_(n=0)^oo (3x)^n or sum_(n=0)^oo 1*(3x)^n with sum_(n=0)^oo a*r^n , we determine: r =3x .
Apply the condition for convergence of geometric series: |r|lt1 .
|3x|lt1
-1 lt3xlt1
Divide each part by 3:
(-1)/3 lt(3x)/3lt1/3
-1/3ltxlt1/3
Final answer:
The power series sum_(n=0)^oo(3x)^n has an interval of convergence: -1/3 ltxlt1/3 . 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...