From the basic list of power series, we have:
ln(x) =sum_(n=0)^oo (-1)^(n) (x-1)^(n+1)/(n+1)
= (x-1)-(x-1)^2/2+(x-1)^3/3 -(x-1)^4/4 +...
We replace "x " with "x+1 " to setup:
ln(1+x) =sum_(n=0)^oo (-1)^n ((x+1)-1)^(n+1)/(n+1)
=sum_(n=0)^oo (-1)^n x^(n+1)/(n+1)
=x-x^2/2+x^3/3 -x^4/4+...
Note: ((x+1)-1) = (x+1-1) = x
Then,
x ln(1+x) =sum_(n=0)^oo (-1)^n x^(n+1)/(n+1) *x
=sum_(n=0)^oo (-1)^n x^(n+2)/(n+1)
Note: x^(n+1) * x = x^(n+1+1) =x^(n+2)
Applying the summation formula, we get:
x ln(1+x)= x*[x-x^2/2+x^3/3 -x^4/4+...]
or
= x^2 -x^3/2+x^4/3-x^5/4 +...
Then the integral becomes:
int_0^(1/4) xln(x+1) = int_0^(1/4) [x^2 -x^3/2+x^4/3-x^5/4 +...]dx
To determine the indefinite integral, we integrate each term using the Power Rule for integration: int x^n dx= x^(n+1)/(n+1) .
int_0^(1/4) [x^2 -x^3/2+x^4/3-x^5/4 +...]dx
= [x^3/3 -x^4/(2*4)+x^5/(3*5)-x^6/(4*6) +...]_0^(1/4)
= [x^3/3 -x^4/7+x^5/15-x^6/24 +...]_0^(1/4)
Apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
F(1/4) or F(0.25) =0.25^3/3 -0.25^4/7+0.25^5/15-0.25^6/24 +...
=1/192-1/1792+1/15360 -1/98304+...
F(0)=0^3/3 -0^4/7+0^5/15-0^6/24 +...
= 0-0+0-0+...
All the terms are 0 then F(0) =0 .
We may stop at 4th term (1/98304~~0.00001017) since we only need an error less than 0.0001 .
F(1/4)-F(0) = [1/192-1/1792+1/15360 -1/98304]-[0]
= 0.00470522926
Thus, the approximated integral value:
int_0^(1/4) xln(x+1) dx ~~0.0047
Thursday, April 26, 2012
int_0^(1/4) xln(x+1) dx Use a power series to approximate the value of the integral with an error of less than 0.0001.
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
The Awakening is told from a third-person omniscient point of view. It is tempting to say that it is limited omniscient because the narrator...
-
Roger is referred to as the "dark boy." He is a natural sadist who becomes the "official" torturer and executioner of Ja...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
The major difference that presented itself between American and British Romantic works was their treatment of the nation and its history. Th...
-
After the inciting incident, where Daniel meets his childhood acquaintance Joel in the mountains outside the village, the rising action begi...
-
The first step in answering the question is to note that it conflates two different issues, sensation-seeking behavior and risk. One good ap...
-
In a speech in 1944 to members of the Indian National Army, Subhas Chandra Bose gave a speech with the famous line "Give me blood, and ...
No comments:
Post a Comment