Friday, April 20, 2012

Precalculus, Chapter 5, 5.4, Section 5.4, Problem 14

You need to find the values of sine and cosine of -pi/12 , using the formulas sin(a-b) = sin a*cos b - sin b*cos a and cos(a-b) = cos a*cos b + sin a*sin b , such that:
sin(-pi/12) = sin(pi/6 - pi/4) = sin(pi/6)cos(pi/4) - sin(pi/4)cos(pi/6)
sin(-pi/12) = 1/2*sqrt2/2 - sqrt2/2*sqrt3/2
sin(-pi/12) =sqrt2/2*(1-sqrt3)/2
cos(-pi/12) = cos(pi/6 - pi/4) = cos(pi/6)cos(pi/4) + sin(pi/4)sin(pi/6)
cos(-pi/12) = sqrt3/2*sqrt2/2 + sqrt2/2*1/2
cos(-pi/12) = sqrt2/2*(1+sqrt3)/2
You need to evaluate tangent function such that:
tan(-pi/12) = (sin(-pi/12) )/(cos(-pi/12) )
tan(-pi/12) = (1-sqrt3)/(1+sqrt3)
tan(-pi/12) = -((1-sqrt3)^2)/2
Hence, evaluating the values of the functions yields sin(-pi/12) =sqrt2/2*(1-sqrt3)/2, cos(-pi/12) = sqrt2/2*(1+sqrt3)/2, tan(-pi/12) = -((1-sqrt3)^2)/2.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...