Monday, May 14, 2012

Calculus of a Single Variable, Chapter 6, 6.4, Section 6.4, Problem 20

Given y'+y*secx=secx
when the first order linear ordinary Differentian equation has the form of
y'+p(x)y=q(x)
then the general solution is ,
y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/ e^(int p(x) dx)
so,
y'+y*secx=secx--------(1)
y'+p(x)y=q(x)---------(2)
on comparing both we get,
p(x) = secx and q(x)=secx
so on solving with the above general solution we get:
y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)
=((int e^(int secx dx) *(secx)) dx +c)/e^(int secx dx)
first we shall solve
e^(int secx dx)=e^(ln(secx +tanx)) = secx+tanx
so
proceeding further, we get
y(x) =((int e^(int secx dx) *(secx)) dx +c)/e^(int secx dx)
=(int ((secx+tanx)*(secx)) dx +c)/(secx+tanx)
=(int ((sec^2x+tanx*(secx)) dx +c)/(secx+tanx)
=(int (sec^2x) dx+int (tanx*(secx)) dx +c)/(secx+tanx)
=(tanx+secx +c)/(secx+tanx)
so y(x)=(tanx+secx +c)/(secx+tanx)=1 +c/(secx+tanx)

Now we have to find the particular solution at y(0) =4
so y(x) =1 +c/(secx+tanx)
=> y(0) = 1+c/(sec(0)+tan(0)) =4
=> 1+c=4
c=3
so the particular solution is
y(x) = 1+ 3/(secx+tanx)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...