Saturday, August 25, 2012

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 33

Separate the r and theta variables and integrate both sides:
int dr = int sin(pi*x)^4 dx
r + c_1=int sin(pi*x)^4 dx
Let pi*x=u, and pi*dx=du
r + c_1=int sin(u)^4 dx
r + c_1=(1/pi)int sin(u)^4 du
r+c_1=(1/pi)int sin(u)^2*sin(u)^2 du
Use a trigonometric identity:
r+c_1=(1/pi) int (1/2)(1-cos(2u))(1/2)(1-cos(2u)) du
r+c_1=1/(4pi)int (1-2cos(2u)+cos(2u)^2) du
Let 2u=t, and 2du=dt
r+c_1=1/(4pi) int (1-2cos(t)+cos(t)^2)(dt/2)
r+c_1=1/(8pi) int (1-2cos(t)+(1/2)(1+cos(2t))) dt
r+c_1=1/(8pi)[int 1dt-2int cos(t) dt+(1/2)int dt+(1/2)int cos(2t) dt]
r+c_1=1/(8pi)[t-2sin(t)+1/2t+(1/2)(1/2)sin(2t)+c_2]
Substitute back in t=2u=2(pi*x)
r+c_1=1/(8pi)[2pi*x-2sin(2pi*x)+pi*x+(1/4)sin(4pi*x)+c_2]
r+c_1=(2pi*x)/(8pi)-2sin(2pi*x)/(8pi)+(pi*x)/(8pi)+1/(32pi)sin(4pi*x)+c_2/(8pi)
Simplify terms and combine the constants into a new constant:
r=x/(4)-1/(4pi)sin(2pi*x)+x/8+1/(32pi)sin(4pi*x)+c
Your general solution is then:
r(x)=(3pi)/4-1/(4pi)sin(2pi*x)+1/(32pi)sin(4pi*x)+c

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...