Tuesday, August 28, 2012

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 18

Evaluate $\displaystyle \int e^{-\theta} \cos 2 \theta d \theta$
If we let $u = e^{-\theta}$ and $dv = \cos 2 \theta d \theta$ then
$du = e^{-\theta} (-1) d \theta$ and $\displaystyle v = \int \cos 2 \theta d \theta = \frac{1}{2} \sin 2 \theta$

So,

$
\begin{equation}
\begin{aligned}
\int e^{-\theta} \cos 2 \theta d \theta = uv - \int v du &= \frac{e^{-\theta}}{2} \sin 2 \theta - \int \frac{1}{2} \sin 2 \theta \left( -e^{-\theta} \right)\\
\\
&= \frac{e^{-\theta}}{2} \sin 2 \theta + \frac{1}{2} \int e^{-\theta} \sin 2 \theta d \theta
\end{aligned}
\end{equation}
$



To evaluate $\displaystyle \int e^{-\theta} \sin 2 \theta d \theta$, we must apply integration by parts once more... so,
If we let $u_1 = e^{-\theta}$ and $dv_1 = \sin 2 \theta d \theta$, then
$du_1 = e^{-\theta} (-1) d \theta$ and $ \displaystyle v_1 = \int \sin 2 \theta d \theta = -\frac{1}{2} \cos 2 \theta$

So,
$\displaystyle \int e^{- \theta} \sin 2 \theta d \theta = u_1 v_1 - \int v_1 d u_1 = \frac{e^{-\theta}\cos 2 \theta}{2}-\int \frac{e^{-\theta}\cos 2 \theta d \theta}{2}$

Going back from the equation,

$
\begin{equation}
\begin{aligned}
\int e^{- \theta} \cos 2 \theta d \theta &= \frac{e^{-\theta}}{2} \sin 2 \theta + \frac{1}{2} \left[ -\frac{e^{- \theta} \cos 2 \theta }{2} - \int \frac{e^{-\theta}\cos 2\theta}{2} d \theta \right]\\
\\
\int e^{- \theta} \cos 2 \theta d \theta &= \frac{e^{-\theta}}{2} \sin 2 \theta - \frac{e^{-\theta}\cos 2 \theta}{4} - \frac{1}{4} \int e^{-\theta}\cos 2\theta d \theta
\end{aligned}
\end{equation}
$


Let's continue the like terms.

$
\begin{equation}
\begin{aligned}
\int e^{- \theta} \cos 2 \theta d \theta + \frac{1}{4} \int e^{-\theta} \cos 2\theta d \theta &= \frac{e^{-\theta}}{2} \sin 2 \theta - \frac{e^{-\theta}\cos 2 \theta}{4}\\
\frac{5}{4} \int e^{-\theta} \cos 2 \theta d \theta &= \frac{e^{-\theta}}{2} \sin 2 \theta - \frac{e^{-\theta}\cos 2\theta}{4}\\
\\
\int e^{-\theta} \cos 2 \theta d \theta &= \left[ \frac{e^{-\theta}}{2} \sin 2 \theta - \frac{e^{-\theta}}{4} \cos 2 \theta \right] \frac{4}{5}\\
\\
\int e^{-\theta} \cos 2 \theta d \theta &= \frac{2e^{-\theta}\sin 2 \theta}{5} - \frac{e^{-\theta}\cos 2 \theta}{5} + c
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...