Thursday, November 22, 2012

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 54

Evaluate $\displaystyle \frac{1 - \sqrt{-1}}{1 + \sqrt{-1}}$ and express the result in the form $a + bi$.


$
\begin{equation}
\begin{aligned}

=& \frac{1 - \sqrt{-1}}{1 + \sqrt{-1}}
&& \text{Given}
\\
\\
=& \frac{1 - \sqrt{1 i^2}}{1 + \sqrt{1 i^2}}
&& \text{Recall that } i^2 = -1
\\
\\
=& \frac{1 - i}{1 + i}
&& \text{Multiply the complex conjugate of the denominator}
\\
\\
=& \left( \frac{1 - i}{1 + i}\right) \left( \frac{1 - i}{1 - i} \right)
&& \text{Use FOIL method to simplify}
\\
\\
=& \frac{1 - 2i + i^2}{1 - i^2}
&& \text{Recall that } i^2 = -1
\\
\\
=& \frac{1 - 2i + (-1)}{1 - (-1)}
&& \text{Simplify}
\\
\\
=& \frac{-2i}{2}
&&
\\
\\
=& -i
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...