Saturday, November 24, 2012

f(x)=ln(x^2+1), c=0 Use the definition of Taylor series to find the Taylor series, centered at c for the function.

Taylor series is an example of infinite series derived from the expansion of f(x) about a single point. It is represented by infinite sum of f^n(x)  centered at x=c . The general formula for Taylor series is:
f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n
or
f(x) = f(c) + f'(c) (x-c)+ (f'(c))/(2!) (x-c)^2+ (f'(c))/(3!) (x-c)^3+ (f'(c))/(4!) (x-c)^4+...
To determine the Taylor series for the function f(x)=ln(x^2+1) centered at c=0 , we may list the f^n(x) as:
f(x)=ln(x^2+1)
Applying derivative formula for logarithmic function: d/(dx) ln(u) = 1/u *(du)/(dx) .
Let u = x^2+1 then (du)/(dx)=2x
f'(x) = d/(dx)ln(x^2+1)
       = 1/(x^2+1) *2x
       =(2x)/(x^2+1)
Applying Quotient rule for differentiation: d/(dx) (u/v) = (u' *v - u*v')/v^2 .
Let u = 2x then u'= 2
      v = x^2+1 then v'=2x  and v^2 = (x^2+1)^2
f^2(x) = d/(dx)((2x)/(x^2+1))
       = ( 2*(x^2+1)-(2x)(2x))/(x^2+1)^2
       =( 2x^2+2-4x^2)/(x^2+1)^2
      = (2-2x^2)/(x^2+1)^2
 
Let u =2-2x^2 then u'= -4x
      v = (x^2+1)^2
then  v^2 = ((x^2+1)^2)^2=(x^2+1)^4
and v'=2*(x^2+1)^(2-1)*2x=4x(x^2+1)
f^3(x) = ((-4x)(x^2+1)^2 -(2-2x^2)*4x(x^2+1))/(x^2+1)^4
        =(x^2+1)^2((-4x)(x^2+1) -(2-2x^2)*4x)/(x^2+1)^4
        =((-4x)(x^2+1) -(2-2x^2)*4x)/(x^2+1)^3
        =((-4x^3-4x) -(8x-8x^3))/(x^2+1)^3
        =(-4x^3-4x -8x+8x^3)/(x^2+1)^3
        =(4x^3-12x)/(x^2+1)^3
 
Let u =(4x^3-12x)  then u'= 12x^2-12
      v =(x^2+1)^3
then v^2 = ((x^2+1)^3)^2
              =(x^2+1)^(3*2)
              =(x^2+1)^6
      then v'=3*(x^2+1)^(3-1)*2x
               =6x(x^2+1)^2
f^4(x) = ((12x^2-12)*(x^2+1)^3 - (4x^3-12x)*6x(x^2+1)^2)/(x^2+1)^6
        =(x^2+1)^2((12x^2-12)*(x^2+1) -(4x^3-12x)*6x)/(x^2+1)^6
       =((12x^4-12)-(24x^4-72x^2))/(x^2+1)^4
       =(12x^4-12-24x^4+72x^2)/(x^2+1)^4
       =(-12x^4+72x^2-12)/(x^2+1)^4
 
f^5(x)=(-480x^3+28x^5+240x)/(x+1)^5
f^6(x)=(-240x^6+3600x^4-3600x^2+240)/(x+1)^6
Plug-in x=0 for each f^n(x) , we get:
f(0)=ln(0^2+1)
        = ln(1)
        =0
f'(0)=(2*0)/(0^2+1)
         =0/1
         =0
f^2(0)= (2-2*0^2)/(0^2+1)^2
         = 2/1
         = 2
f^3(0) =(4*0^3-12*0)/(0^2+1)^3
          =0/1
          =0
f^4(0)=(-12*0^4+72*0^2-12)/(0^2+1)^4
          = -12/1
          = -12
f^5(0)=(-480*0^3+28*0^5+240*0)/(0+1)^5
          =0/1
          =0
f^6(0)=(-240*0^6+3600*0^4-3600*0^2+240)/(0+1)^6
          =240/1
          =240
Applying the formula for Taylor series, we get:
ln(x^2+1) =sum_(n=0)^oo (f^n(0))/(n!) (x-0)^n
  =sum_(n=0)^oo (f^n(0))/(n!) x^n
= f(0) + f'(0) x+ (f'(0))/(2!) x^2+(f'(0))/(3!) x^3+ (f'(0))/(4!) x^4+...
=0+ 0*x+2/(2!) x^2+ 0/(3!) x^3+ (-12)/(4!) x^4+ 0/(5!) x^5+ (240)/(6!) x^6+...
=0+ 0*x+2/2x^2+ 0/6 x^3-12/24 x^4+ 0/120 x^5+ 240/720x^6+...
=0+0+ x^2+0-1/2x^4+0+1/3x^6
= x^2-1/2x^4+1/3x^6+...
The Taylor series of the function f(x)=ln(x^2+1) centered at c=0 is:
ln(x^2+1) =x^2-1/2x^4+1/3x^6+...
or
ln(x^2+1)= sum_(n=1)^oo (-1)^(n+1) x^(2n)/n

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...