Wednesday, November 21, 2012

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 56

Determine the absolute maximum and absolute minimum values of $\displaystyle f(x) = x + \cot \left( \frac{x}{2} \right)$ on the interval $\displaystyle \left[ \frac{\pi}{4}, \frac{7\pi}{4}\right]$.

Taking the derivative of $f(x)$ we have,

$
\begin{equation}
\begin{aligned}
f'(x) &= 1 + \left( -\csc^2 \left( \frac{x}{2}\right) \cdot \left( \frac{1}{2} \right) \right)\\
\\
f'(x) &= 1 - \frac{1}{2} \csc^2 \left( \frac{x}{2} \right)
\end{aligned}
\end{equation}
$

Solving for critical numbers, when $f'(x) = 0$
$0 = \frac{1}{2} \csc^2 \left( \frac{x}{2} \right)$


$
\begin{equation}
\begin{aligned}
\frac{1}{2} \csc^2 \left( \frac{x}{2} \right) &= 1 &&;\text{ recall that } \csc x = \frac{1}{\sin x}\\
\\
2 \sin^2 \left( \frac{x}{2} \right) &= 1\\
\\
\sin^2 \left( \frac{x}{2} \right) &= \frac{1}{2}\\
\\
\sin \left( \frac{x}{2} \right) &= \sqrt{\frac{1}{2}}\\
\\
\frac{x}{2} &= \frac{\pi}{4} \text{ and } \frac{3\pi}{4}\\
\\
x &= \frac{\pi}{4} (2) \text{ and } x = \frac{3\pi(2)}{4}\\
\\
x &= \frac{\pi}{2} \text{ and } x = \frac{3 \pi}{2}

\end{aligned}
\end{equation}
$


It shows that we have either absolute maximum and minimum values at $\displaystyle x = \frac{\pi}{2}$ and $\displaystyle x = \frac{3\pi}{2}$
So,

$
\begin{equation}
\begin{aligned}
\text{when } &= \frac{\pi}{2}\\
\\
f \left( \frac{\pi}{2} \right) &= \frac{\pi}{2} + \cot \left( \frac{\frac{\pi}{2}}{2} \right)\\
\\
f\left( \frac{\pi}{2} \right) &= 2.5708\\
\\
\\
\\
\text{when } &= \frac{3 \pi}{2}\\
\\
f\left( \frac{3\pi}{2} \right) &= \frac{3\pi}{2} + \cot \left(\frac{\frac{3\pi}{2}}{2} \right)\\
\\
f \left( \frac{3\pi}{2} \right) &= 3.7124
\end{aligned}
\end{equation}
$

Evaluating $f(x)$ at end points $\displaystyle x = \frac{\pi}{2}$ and $\displaystyle x = \frac{7\pi}{2}$

$
\begin{equation}
\begin{aligned}
\text{when } x &= \frac{\pi}{4},\\
\\
f \left( \frac{\pi}{4} \right) &= \frac{\pi}{4} + \cot \left( \frac{\frac{\pi}{4}}{2} \right)\\
\\
f \left( \frac{\pi}{4} \right) &= 3.1996
\\
\\
\\
\text{when } x = \frac{7\pi}{4}\\
\\
f \left( \frac{7\pi}{4} \right) &= \frac{7\pi}{4} + \cot \left( \frac{\frac{7\pi}{4}}{4} \right)\\
\\
f \left( \frac{7\pi}{4} \right) &= 3.0836
\end{aligned}
\end{equation}
$

Therefore, we have absolute maximum value at $\displaystyle f \left( \frac{3\pi}{4} \right) = 3.7124 $ and the absolute minimum value at $\displaystyle f \left( \frac{\pi}{2} \right) = 2.5708$ on the interval $\displaystyle \left[ \frac{\pi}{4}, \frac{7\pi}{4}\right]$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...