Friday, November 30, 2012

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 24

Solve the system of equations $
\begin{equation}
\begin{aligned}

4x -8y =& -7 \\
4y + z =& 7 \\
-8x + z =& -4

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

4x - 8y \phantom{+ 2z} =& -7
&& \text{Equation 1}
\\
8y + 2z =& 14
&& 2 \times \text{ Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

4x \phantom{8y} +2z =& 7
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

4x + 2z =& 7
&& \text{Equation 4}
\\
-8x + z =& -4
&& \text{Equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

8x + 4z =& 14
&& 2 \times \text{ Equation 4}
\\
-8x + z =& -4
&& \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{8x + } 5z =& 10
&& \text{Add}
\\
z =& 2
&& \text{Divide each side by $5$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-8x + 2 =& -4
&& \text{Substitute } z = 2 \text{ in Equation 3}
\\
-8x =& -6
&& \text{Subtract each side by $2$}
\\
x =& \frac{-6}{-8}
&& \text{Divide each side by $-8$}
\\
x =& \frac{3}{4}
&& \text{Reduce to lowest terms}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

4 \left( \frac{3}{4} \right) - 8y =& -7
&& \text{Substitute } x = \frac{3}{4} \text{ in Equation 1}
\\
\\
3 - 8y =& -7
&& \text{Multiply}
\\
\\
-8y =& -10
&& \text{Subtract each side by $3$}
\\
\\
y =& \frac{-10}{-8}
&& \text{Divide each side by $-8$}
\\
\\
y =& \frac{5}{4}
&& \text{Reduce to lowest terms}


\end{aligned}
\end{equation}
$



The ordered triple is $\displaystyle \left( \frac{3}{4}, \frac{5}{4}, 2 \right)$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...