Wednesday, December 19, 2012

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 40

int_(pi/6)^(pi/3)csc^3(x)dx
Apply the integral substitution,
Let u=tan(x/2)
=>du=1/2sec^2(x/2)dx
using pythagorean identity: 1+tan^2(theta)=sec^2(theta)
du=1/2(1+tan^2(x/2))dx
du=1/2(1+u^2)dx
=>dx=(2/(1+u^2))du
csc(x)=1/sin(x)=1/(2sin(x/2)cos(x/2))
=(1/(cos^2(x/2)))/((2sin(x/2)cos(x/2))/(cos^2(x/2)))
=(sec^2(x/2))/(2tan(x/2))
=(1+tan^2(x/2))/(2tan(x/2))
=(1+u^2)/(2u)
Now let's evaluate the indefinite integral,
intcsc^3(x)dx=int((1+u^2)/(2u))^3(2/(1+u^2))du
=int(1+u^2)^2/(4u^3)du
=int(1+2u^2+u^4)/(4u^3)du
=1/4int(1/u^3+2/u+u)du
=1/4(int1/u^3du+2int1/udu+intudu)
=1/4((u^(-3+1)/(-3+1))+2ln|u|+u^2/2)
=1/4(-1/(2u^2)+2ln|u|+u^2/2)
Substitute back u=tan(x/2)
=1/4(-1/(2tan^2(x/2))+2ln|tan(x/2)|+1/2tan^2(x/2)
=1/4(1/2tan^2(x/2)-1/2cot^2(x/2)+2ln|tan(x/2)|)
Add a constant C to the solution,
=1/4(1/2tan^2(x/2)-1/2cot^2(x/2)+2ln|tan(x/2)|)+C
int_(pi/6)^(pi/3)csc^3(x)dx=[1/4(1/2tan^2(x/2)-1/2cot^2(x/2)+2ln|tan(x/2)|)]_(pi/6)^(pi/3)
=[1/4(1/2tan^2(pi/6)-1/2cot^2(pi/6)+2ln|tan(pi/6)|]-[1/4(1/2tan^2(pi/12)-1/2cot^2(pi/12)+2ln|tan(pi/12)|]
=[1/4(1/2(1/sqrt(3))^2-1/2(sqrt(3))^2+2ln(1/sqrt(3))]-[1/4(1/2(2-sqrt(3))^2-1/2(2+sqrt(3))^2+2ln(2-sqrt(3))]
=[1/4(1/6-3/2-ln3)]-[1/4(1/2(4-4sqrt(3)+3)-1/2(4+4sqrt(3)+3+2ln(2-sqrt(3)))]
=[-1/3-ln(3)/4]-[1/4(7/2-2sqrt(3)-7/2-2sqrt(3)+2ln(2-sqrt(3))]
=[-1/3-ln(3)/4]-[1/4(-4sqrt(3)+2ln(2-sqrt(3)))]
=[-1/3-ln(3)/4]-[1/4(-4sqrt(3)+ln(4+3-4sqrt(3)))]
=-1/3-ln(3)/4+sqrt(3)-ln(7-4sqrt(3))/4
=-1/3+sqrt(3)-ln(3)/4-ln(7-4sqrt(3))/4
=-1/3+sqrt(3)+1/4ln((7+4sqrt(3))/3)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...