Sunday, December 30, 2012

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 54

Find the equation of the tangent line and normal line of the curve $y = (1 + 2x)^2 = 1 + 4x + 4x^2$ at the point $(1,9)$

Required:

Equation of the tangent line and the normal line at $P(1,9)$

Solution:



$
\begin{equation}
\begin{aligned}

\qquad y' = m_T =& \text{Slope of the tangent line}\\
m_N =& \text{Slope of the normal line}
&&
\\
\\
\qquad y' = m_T =& \frac{d}{dx} (1) + 4 \frac{d}{dx} (x) + 4 \frac{d}{dx} (x^2)
&& \text{}
\\
\qquad y' = m_T =& 0 + 4(1) + 4(2x)
&& \text{}
\\
\qquad y' = m_T =& 4 + 8x
&& \text{}
\\
\\
\qquad m_T =& 4 + 8x
&& \text{Substitute value of $x$ which is 1}
\\
\\
\qquad m_T =& 4 + 8 (1)
&& \text{Simplify the equation}
\\
\\
\qquad m_T =& 12
&& \text{}
\\
\\


\end{aligned}
\end{equation}
$


Solving for the equation of the tangent line:



$
\begin{equation}
\begin{aligned}

\qquad y - y_1 =& m_T(x - x_1)
&& \text{Substitute the value of the slope $(m_T)$ and the given point}
\\
\\
\qquad y - 9 =& 12(x - 1)
&& \text{Multiply $12 $ the equation}
\\
\\
\qquad y - 9 =& 12x - 12
&& \text{Add $9$ to each sides}
\\
\\
\qquad y =& 12x - 12 + 9
&& \text{Combine like terms}
\\
\\
\qquad y =& 12x - 3
&& \text{Equation of the tangent line to the curve at $P (1,9)$}


\end{aligned}
\end{equation}
$


Solving for the equation of the normal line


$
\begin{equation}
\begin{aligned}

m_N =& \frac{-1}{m_T}\\
m_N =& \frac{-1}{12}
&&
\\
\\
y- y_1 =& m_N(x - x_1)
&& \text{Substitute the value of the slope $(m_N)$ and the given point}
\\
\\
y - 9 =& \frac{-1}{12} (x - 1)
&& \text{Multiply $\large \frac{-1}{12}$ in the equation}
\\
\\
y - 9 =& \frac{-x + 1}{12}
&& \text{Add $9$ to each sides}
\\
\\
y =& \frac{-x + 1}{12} + 9
&& \text{Get the LCD}
\\
\\
y =& \frac{-x + 1 + 108}{12}
&& \text{Combine like terms}
\\
\\
y =& \frac{-x + 109}{12}
&& \text{Equation of the normal line at $P(1,9)$}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...