Monday, December 31, 2012

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 28

If $\displaystyle f(x) = \frac{x^2 + 1}{x - 2}$, find $f'(a)$.

Using the definition of the derivative


$
\begin{equation}
\begin{aligned}

f'(a) &= \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
&& \\
\\
f'(a) &= \lim_{h \to 0} \frac{\displaystyle \frac{(a + h)^2 + 1}{a + h - 2} - \frac{a^2 + 1}{a - 2}}{h}
&& \text{Substitute $f(a + h)$ and $f(a)$}\\
\\
f'(a) &= \lim_{h \to 0} \frac{(a - 2)(a^2 + 2ah + h^2 + 1) - (a^2 + 1)(a + h - 2)}{(h)(a + h -2)(a - 2)}
&& \text{Get the LCD of the numerator and simplify}\\
\\
f'(a) &= \lim_{h \to 0} \frac{a^3 + 2a^2 h + ah^2 +a - 2a^2 - 4ah - 2h^2 - 2 - a^3 - a^2 h +2a^2 - a - h + 2}{(h)(a + h -2)(a - 2)}
&& \text{Expand the equation}\\
\\
f'(a) &= \lim_{h \to 0} \frac{\cancel{a^3} + 2a^2 h + ah^2 + \cancel{a} - \cancel{2a^2} - 4ah - 2h^2 - \cancel{2} - \cancel{a^3} - a^2 h + \cancel{2a^2} - \cancel{a} - h + \cancel{ 2}}{(h)(a + h -2)(a - 2)}
&& \text{Combine like terms}\\
\\
f'(a) &= \lim_{h \to 0} \frac{a^2h + ah^2 - 4ah - 2h^2 - h}{(h)(a + h -2)(a - 2)}
&& \text{Factor the numerator}\\
\\
f'(a) &= \lim_{h \to 0} \frac{\cancel{h}(a^2 + ah - 4 - 2h - 1)}{\cancel{(h)}(a + h - 2)(a - 2)}
&& \text{Cancel out like terms}\\
\\
f'(a) &= \lim_{h \to 0} \left[\frac{a^2 + ah - 4a - 2h - 1}{(a + h - 2)(a - 2)} \right] = \frac{a^2 + a(0) - 4a - 2(0) - 1}{(a + 0 - 2)(a - 2)}
&& \text{Evaluate the limit}

\end{aligned}
\end{equation}
$


$\qquad\fbox{$f'(a) = \displaystyle \frac{a^2 - 4a - 1}{(a - 2)^2}$} $

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...