Wednesday, December 19, 2012

Finite Mathematics, Chapter 1, 1.1, Section 1.1, Problem 22

Determine a equation in slope intercept form (where possible) for the line that goes through
$\displaystyle \left( -2, \frac{3}{4} \right)$ and $\displaystyle \left( \frac{2}{3} , \frac{5}{2} \right)$
Let $\displaystyle (x_1 , y_1) = \left( -2, \frac{3}{4} \right)$ and $\displaystyle (x_2, y_2) = \left( \frac{2}{3} , \frac{5}{2} \right)$.
Then, by using two point form
$\displaystyle y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$


$
\begin{equation}
\begin{aligned}
y - \frac{3}{4} &= \frac{\frac{5}{2} - \frac{3}{4}}{\frac{2}{3} - (-2) } ( x - (-2))\\
\\
y - \frac{3}{4} &= \frac{\frac{10-3}{4}}{\frac{2}{3}+ 2} (x + 2)\\
\\
y - \frac{3}{4} &= \frac{\frac{7}{4}}{\frac{8}{3}} ( x + 2)\\
\\
y - \frac{3}{4} &= \frac{21}{32} (x + 2)\\
\\
y - \frac{3}{4} &= \frac{21}{32}x + \frac{21}{16}\\
\\
y &= \frac{21}{32}x + \frac{33}{16}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...