Tuesday, February 26, 2013

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 24

Evaluate the expression (a) $(f \circ f) (-1)$ and (b) $(g \circ g)(2)$ using $f(x) = 3x -5$ and $g(x) = 2 - x^2$
a.) $(f \circ f) (-1)$
Solving for $f \circ f$,

$
\begin{equation}
\begin{aligned}
f \circ f &= f(f(x)) \\
\\
f \circ f &= 3(3x-5)-5 && \text{Substitute } f(x) = 3x - 5\\
\\
f \circ f &= 9x - 15 - 5 && \text{Simplify}\\
\\
f \circ f &= 9x - 20 && \text{Model}
\end{aligned}
\end{equation}
$

For $(f \circ f )(-1)$,

$
\begin{equation}
\begin{aligned}
(f \circ f )(-1) &= 9(-1) - 20 && \text{Substitute } x = -1\\
\\
(f \circ f )(-1) &= -9 -20 && \text{Simplify} \\
\\
(f \circ f )(-1) &= - 29
\end{aligned}
\end{equation}
$


b.) $(g \circ g)(2)$
Solving for $g \circ g$,

$
\begin{equation}
\begin{aligned}
g \circ g &= g(g(x))\\
\\
g \circ g &= 2-(2-x^2)^2 && \text{Substitute } g(x) = 2- x^2\\
\\
g \circ g &= 2-\left( 4 - 4x^2 + x^4 \right) && \text{Apply Distributive Property}\\
\\
g \circ g &= 2- 4 + 4x^2 - x^4 && \text{Simplify}\\
\\
g \circ g &= -2 + 4x^2 - x^4 && \text{Model}
\end{aligned}
\end{equation}
$


For $(g \circ g)(2)$,

$
\begin{equation}
\begin{aligned}
(g \circ g)(2) &= -2 + 4(2)^2 - (2)^4 && \text{Substitute } x = 2\\
\\
(g \circ g)(2) &= - 2 + 16 -16 && \text{Simplify}\\
\\
(g \circ g)(2) &= -2
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...