Wednesday, February 27, 2013

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 26

Determine the $\displaystyle \lim \limits_{t \to 0} \left( \frac{1}{t} - \frac{1}{t^2 + t} \right)$, if it exists.


$
\begin{equation}
\begin{aligned}
\lim \limits_{t \to 0} \left( \frac{1}{t} - \frac{1}{t^2 + t} \right)
& = \lim \limits_{t \to 0} \frac{t^2 + \cancel{t} - \cancel{t}}{t(t^2 + t)} = \lim \limits_{t \to 0} \frac{t^2 }{t(t^2 + t)}
&& \text{ Get the LCD and combine like terms}\\
\\
& = \lim \limits_{t \to 0} \frac{\cancel{t^2}}{\cancel{t^2} (t + 1) } = \lim \limits_{t \to 0} \frac{1}{t + 1}
&& \text{ Factor the denominator and cancel out like terms}\\
\\
& = \frac{1}{0 + 1} = \frac{1}{1}
&& \text{ Substitute value of $t$ and simplify}\\
\\
& = 1


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...