Friday, February 22, 2013

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 47

Find the first and second derivatives of $h(x) = \sqrt{x^2+1}$
Solving for the first derivative of the given function


$
\begin{equation}
\begin{aligned}
h'(x) & = \frac{d}{dx} \left( \sqrt{x^2+1} \right)\\
\\
h'(x) & = \frac{d}{dx} (x^2+1)^{\frac{1}{2}}\\
\\
h'(x) & = \frac{1}{2} (x^2+1)^{\frac{-1}{2}} \frac{d}{dx} ( x^2 +1 )\\
\\
h'(x) & = \frac{1}{2} (x^2+1)^{\frac{-1}{2}} \left[ \frac{d}{dx} (x^2) + \frac{d}{dx} (1) \right]\\
\\
h'(x) & = \frac{1}{2} (x^2+1)^{\frac{-1}{2}} (2x+0)\\
\\
h'(x) &= \frac{\cancel{2}x}{\cancel{2}(x^2+1)^{\frac{1}{2}}}\\
\\
h'(x) &= \frac{x}{\sqrt{x^2}+1}
\end{aligned}
\end{equation}
$


Solving for the second derivative of the given function


$
\begin{equation}
\begin{aligned}
h''(x) &= \frac{d}{dx} \left( \frac{x}{\sqrt{x+1}} \right)\\
\\
h''(x) &= \frac{d}{dx} \left[ \frac{x}{(x^2+1)^{\frac{1}{2}}} \right]\\
\\
h''(x) &= \frac{\left[ (x^2+1)^{\frac{1}{2}} \cdot \frac{d}{dx}(x) \right]- \left[ (x) \cdot \frac{d}{dx} (x^2+1)^{\frac{1}{2}}\right] }{\left[ (x^2+1)^{\frac{1}{2}}\right]^2}\\
\\
h''(x) &= \frac{\left[ (x^2+1)^{\frac{1}{2}} (1)\right] - \left[ (x) \left( \frac{1}{2}\right) (x^2+1)^{\frac{-1}{2}} \cdot \frac{d}{dx} (x^2+1) \right] }{x^2+1}\\
\\
h''(x) &= \frac{(x^2+1)^{\frac{1}{2}} - \left[ \left(\frac{x}{2} \right)(x^2+1)^{\frac{-1}{2}} (2x+0)\right]}{x^2+1}\\
\\
h''(x) &= \frac{(x^2+1)^{\frac{1}{2}} - \left[ \left( \frac{x}{\cancel{2}} \right) (x^2+1)^{\frac{-1}{2}} (\cancel{2}x)\right] }{x^2+1}\\
\\
h''(x) &= \frac{(x^2+1)^{\frac{1}{2}} - (x^2)(x^2+1)^{\frac{-1}{2}}}{x^2+1}\\
\\
h''(x) &= \frac{(x^2+1)^{\frac{1}{2}} - \frac{x^2}{(x^2+1)^{\frac{1}{2}}}}{x^2+1}\\
\\
h''(x) &= \frac{\frac{\cancel{x^2} +1 - \cancel{x^2}}{(x^2+1)^{\frac{1}{2}}}}{x^2+1}\\
\\
h''(x) &= \frac{1}{(x^2+1)(x^2+1)^{\frac{1}{2}}}\\
\\
h''(x) &= \frac{1}{(x^2+1)^{\frac{3}{2}}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...