Wednesday, February 20, 2013

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 30

Find the infinite limit for $\lim\limits_{x \rightarrow \pi^-} \cot x $


$
\begin{array}{|c|c|}
\hline
x & f(x)\\
\hline
\pi - 0.1 & -9.9666\\
\pi - 0.01 & -99.9966\\
\pi - 0.001 & -999.9996\\
\pi - 0.0001 & -9999.9999\\
\hline
\end{array}
$


According to the table, as the values of $x$ approaches $\pi$ from the left side, the values of the limit approaches $-\infty$


$
\begin{equation}
\begin{aligned}
\lim\limits_{x \to \pi^-} \cot x & = \lim\limits_{x \to \pi^-} \displaystyle \frac{1}{\tan x} = \frac{1}{\tan (\pi - 0.0001)}\\
\lim\limits_{x \to \pi^-} \cot x & = -9999.999
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...