Monday, February 18, 2013

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 51

a.) $\displaystyle y = \frac{1}{1 + x^2}$ is a curve called Witch of Maria Agnesi. Find the equation of the tangent line to this curve at $P \left(\displaystyle -1, \frac{1}{2}\right)$

Required:

Equation of the tangent line to the curve at $P \left(\displaystyle -1, \frac{1}{2}\right)$

Solution:

Let $y' = m$ (slope)


$
\begin{equation}
\begin{aligned}

\qquad y' = m =& \frac{\displaystyle (1 + x^2) \frac{d}{dx} (1) - \left[ (1) \frac{d}{dx} (1 + x^2) \right]}{(1 + x^2)^2}
&&
\\
\\
\qquad y' = m =& \frac{(1 + x^2) (0) - (2x)}{(1 + x^2)^2} = \frac{-2x}{(1 + x^2)^2}
&&
\\
\\
\qquad m =& \frac{-2x}{(1 + x^2)^2}
&& \text{Substitute the value of $x$ which is $-1$}
\\
\\
\qquad m =& \frac{-2(-1)}{[1 + (-1)]^2}
&& \text{Simplify the equation}
\\
\\
\qquad m =& \frac{2}{4}
&& \text{Reduce to lowest term}
\\
\\
\qquad m =& \frac{1}{2}
&&

\end{aligned}
\end{equation}
$


Solving for the equation of the tangent line:


$
\begin{equation}
\begin{aligned}

\qquad y - y_1 =& m(x - x_1)
&& \text{Substitute the value of the slope $(m)$ and the given point}
\\
\\
\qquad y - \frac{1}{2} =& \frac{1}{2} [x - (-1)]
&& \text{Distribute $\large \frac{1}{2}$ in the equation}
\\
\\
\qquad y - \frac{1}{2} =& \frac{x + 1}{2}
&& \text{Add $\large \frac{1}{2}$ to each side}
\\
\\
\qquad y =& \frac{x + 1 + 1}{2}
&& \text{Combine like terms}
\\
\\
\qquad y =& \frac{x + 2}{2}
&& \text{Equation of the tangent line to the curve at $P \left(\displaystyle -1, \frac{1}{2}\right)$}


\end{aligned}
\end{equation}
$


b.) Graph the curve and the tangent line on part (a).

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...