Saturday, March 9, 2013

Calculus: Early Transcendentals, Chapter 3, 3.5, Section 3.5, Problem 17

Take the derivative of both sides:
(dy)/(dx) (tan^(-1)(x^2y))=(dy/dx)(x+xy^2)
compute the derivative of each side.
first the left hand side, using chain rule:
(d)/(du)(arctan(u))(d)/(dx)(x^2y)
=((1)/(1+u^2))(2xy+(dy/dx))
=((1)/(1+x^4y^2))(2xy+(dy)/(dx))
then the right hand side:
(d)/(dx)(x+xy^2)
=1+(d)/(dx)(xy^2)
=1+(1y^2+x2y(dy)/(dx))
=1+y^2+(dy)/(dx)2xy
Now equate the two sides and solve for dy/dx:
((1)/(1+x^4y^2))(2xy+(dy/dx))=1+y^2+(dy)/(dx)2xy
2xy+(dy)/(dx)=(1+y^2+2xy(dy)/(dx))(1+x^4y^2)
(dy)/(dx)=1+y^2+2xy(dy)/(dx)+x^4y^2+x^4y^4+2x^5y^3(dy)/(dx)-2xy
(dy)/(dx)(1-2xy-2x^5y^3)=1-2xy+y^2+x^4y^2+x^4y^4
(dy)/(dx)=(1-2xy+y^2+x^4y^2+x^4y^4)/(1-2xy-2x^5y^3)

as required.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...