Tuesday, March 12, 2013

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 38

We need to find the function $f \circ g \circ h$

$f(x) = 2x-1, \qquad \quad g(x)=x^2, \qquad \quad h(x)=1-x$


$
\begin{equation}
\begin{aligned}
f \circ g \circ h =& f(g(h(x)))\\

\text{Solving for $g \circ h$}\\

g(h(x)) =& x^2\\

g( 1 - x) =& x^2
&& \text{ Substitute the given function $h(x)$ to the value of $x$ of the function $g(x)$}\\

g(1 - x) =& (1 -x)^2
&& \text{ Using FOIL method}\\

g \circ h =& 1 - 2x + x^2\\
\\
\text{ Solving for $f \circ g \circ h$}\\

g \circ h =& 1 - 2x + x^2\\

f(g(h(x))) =& 2x - 1\\

f (1 - 2x + x^2) =& 2x - 1
&& \text{ Substitute the value of $x$}\\

f(1 - 2x + x^2) =& 2(1 -2x + x^2) -1
&& \text{ Simplify the equation}\\

f(1 -2x + x^2) =& 2 - 4x + 2x^2 -1
&& \text{ Combine like terms}


\end{aligned}
\end{equation}
$


$\boxed{f \circ g \circ h = 1 - 4x + 2x^2}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...