Thursday, March 14, 2013

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 20

Find the derivative of $\displaystyle f(x) = 1.5x^2 - x + 3.7$ using the definition and the domain of its derivative.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad f'(x) &= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
&&
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{1.5(x + h)^2 - (x + h) + 3.7 - (1.5x^2 - x + 3.7)}{h}
&& \text{Substitute $f(x + h)$ and $f(x)$}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\cancel{1.5x^2} + 3xh + 1.5h^2 - \cancel{x} - h + \cancel{3.7} - \cancel{1.5}x^2 + \cancel{x} - \cancel{3.7}}{h}
&& \text{Expand and combine like terms}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{3xh + 1.5h^2 - h}{h}
&& \text{Factor the numerator}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\cancel{h}(3x + 1.5h - 1)}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
f'(t) &= \lim_{h \to 0} 3x + 1.5h - 1 = 3x + 1.5(0) - 1
&& \text{Evaluate the limit}

\end{aligned}
\end{equation}
$


$\qquad \fbox{$f'(x) = 3x - 1$}$

$f(x)$ is a polynomial function while $f'(x)$ is a linear function. Both of the functions are continuous in every number. Therefore, their domain is $(-\infty, \infty)$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...