Sunday, September 15, 2013

Calculus and Its Applications, Chapter 1, 1.8, Section 1.8, Problem 66

Find the first through the fourth derivatives of the function $\displaystyle f(x) = \frac{x + 3}{x - 2}$. Be sure to
simplify at each stage before continuing.

By applying Quotient Rule,

$
\begin{equation}
\begin{aligned}
f'(x) &= \frac{(x - 2) \cdot \frac{d}{dx} (x + 3) - (x + 3) \cdot \frac{d}{dx} (x - 2) }{(x - 2)^2}\\
\\
&= \frac{(x - 2)(1) - (x + 3)(1)}{(x - 2)^2}\\
\\
&= \frac{x -2 - x - 3}{(x - 2)^2}\\
\\
&= \frac{-5}{(x - 2)^2}
\end{aligned}
\end{equation}
$


We have $f'(x) = -5(x -2 )^{-2}$, so by applying Chain Rule,

$
\begin{equation}
\begin{aligned}
f''(x) = -5(-2)(x - 2)^{-2 -1} \cdot \frac{d}{dx} ( x- 2) &= 10 ( x - 2)^{-3} (1)\\
\\
&= 10 (x - 2)^{-3}
\end{aligned}
\end{equation}
$


Again,

$
\begin{equation}
\begin{aligned}
f'''(x) = 10 (-3)(x - 2)^{- 3- 1} \cdot \frac{d}{dx} (x - 2) &= -30 (x - 2)^{-4}(1)\\
\\
&= -30 (x - 2)^{-4}
\end{aligned}
\end{equation}
$


Then,

$
\begin{equation}
\begin{aligned}
f^{(4)}x = -30 (-4)(x - 2)^{-4-1} \cdot \frac{d}{dx} (x - 2) &= 120 (x -2)^{-5} (1) \\
\\
&= 120(x - 2)^{-5} \text{ or } \frac{120}{(x - 2)^5}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...