Tuesday, September 24, 2013

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 18

a.) Determine the equation of the tangent line to the graph of $y=g(x)$ at $x = 5$ $\text{ if } g(5) = -3 \text{ and } g'(5) =4$




b.) Suppose that the tangent line to $y = f(x)$ at $(4,3)$ passes through the point $(0,2)$. Find $f(4)$ and $f'(4)$






$\text{a.) }$ Using point slope form


$y - y_1 = m(x-x_1)$

Recall from the definition that the derivative of the function is equal to the slope so,



$
\begin{equation}
\begin{aligned}
m &= g'(5) = 4\\
y-(-3) &= 4(x-5)\\
y+3 &= 4x-20\\
y &= 4x - 20 - 3\\
y &= 4x-23
\end{aligned}
\end{equation}
$


$\text{b.) }$ The line passes through the points $(4,3)$ and $(0,2)$ so we can use two
point form to determine the equation of the line.



$
\begin{equation}
\begin{aligned}
y - y_1 &= \frac{y_2-y_1}{x_2-x_1} (x-x_1)\\
y-3 &= \left( \frac{2-3}{0-4} \right) (x-4)\\
y-3 &= \frac{1}{4} (x-4)\\
y-3 &= \frac{x}{4}-1\\
y &= \frac{x}{4}+2\\
f(x) &= \frac{x}{4}+2\\
f(4) &= \frac{4}{4} +2 = 1+2 = 3\\
f(4) &= 3
\end{aligned}
\end{equation}
$



From the definition,



$
\begin{equation}
\begin{aligned}
f'(x) &= \lim\limits_{h \to 0} \frac{f(x+h)-f(x)}{h}\\
f'(x) &= \lim\limits_{h \to 0} \frac{\frac{x+h}{4}+2 - \left[\frac{x}{4}+2\right]}{h}\\
f'(x) &= \lim\limits_{h \to 0} \frac{\cancel{\frac{x}{4}}+\frac{h}{4}+\cancel{2}-\cancel{\frac{x}{4}}+\cancel{2}}{h} \\
f'(x) &= \lim\limits_{h \to 0} \frac{\cancel{h}}{4\cancel{h}}\\
f'(x) &= \lim\limits_{h \to 0} \left(\frac{1}{4}\right)\\
f'(x) &= \frac{1}{4}\\
f'(4) &= \frac{1}{4}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...