Wednesday, September 18, 2013

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 34

Determine $y''$ of $\sqrt{x} + \sqrt{y} = 1$ by using implicit differentiation.

Solving for 1st Derivative


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (\sqrt{x}) + \frac{d}{dx} (\sqrt{y}) =& \frac{d}{dx} (1)
\\
\\
\frac{d}{dx} (x)^{\frac{1}{2}} + \frac{d}{dx} (y)^{\frac{1}{2}} =& \frac{d}{dx} (1)
\\
\\
\frac{1}{2} (x)^{\frac{-1}{2}} + \frac{1}{2} (y)^{\frac{-1}{2}} \frac{d}{dx} =& 0
\\
\\
\frac{1}{2 (y)^{\frac{1}{2}}} \frac{dy}{dx} =& \frac{-1}{2(x)^{\frac{1}{2}}}
\\
\\
\frac{dy}{dx} =& - \frac{\cancel{2} (y)^{\frac{1}{2}}}{\cancel{2}(x)^{\frac{1}{2}}}
\\
\\
\frac{dy}{dx} =& - \frac{(y)^{\frac{1}{2}}}{(x)^{\frac{1}{2}}}

\end{aligned}
\end{equation}
$


Solving for 2nd Derivative


$
\begin{equation}
\begin{aligned}

\frac{d^2 y}{dx^2} =& - \frac{\displaystyle (x)^{\frac{1}{2}} \frac{d}{dx}(y)^{\frac{1}{2}} - (y)^{\frac{1}{2}} \frac{d}{dx} (x)^{\frac{1}{2}} }{[(x)^{\frac{1}{2}}]^2}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& - \frac{\displaystyle (x)^{\frac{1}{2}} \left( \frac{1}{2} \right) (y)^{\frac{-1}{2}} \frac{dy}{dx} - (y)^{ \frac{1}{2}} \left( \frac{1}{2} \right) (x)^{\frac{-1}{2}} }{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& - \frac{\displaystyle \frac{(x)^{\frac{1}{2}}}{2 (y)^{\frac{1}{2}}} \frac{dy}{dx} - \frac{(y)^{\frac{1}{2}}}{2(x)^{\frac{1}{2}}} }{x}
\qquad \qquad \text{We know that $\large \frac{dy}{dx} = - \frac{(y)^{\frac{1}{2}}}{(x)^{\frac{1}{2}}}$}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& - \frac{\displaystyle \left[ \frac{\cancel{(x)^{\frac{1}{2}}}}{2 \cancel{(y)^{\frac{1}{2}}}} \right] \left[ - \frac{\cancel{(y)^{\frac{1}{2}}}}{\cancel{(x)^{\frac{1}{2}}}} \right] - \frac{(y)^{\frac{1}{2}}}{2(x)^{\frac{1}{2}}} }{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& - \frac{\displaystyle \left( \frac{-1}{2} \right) - \frac{(y)^{\frac{1}{2}}}{2 (x)^{\frac{1}{2}}}}{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{\displaystyle \frac{1}{2} - \frac{(y)^{\frac{1}{2}}}{2(x)^{\frac{1}{2}}}}{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{\displaystyle \frac{1}{2} + \frac{(y)^{\frac{1}{2}}}{2 (x)^{\frac{1}{2}}}}{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{\displaystyle \frac{(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}}}{2(x)^{\frac{1}{2}}}}{x}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}} }{2x (x)^{\frac{1}{2}}}
\qquad \qquad \text{We know that $\sqrt{x} + \sqrt{y} = 1$ or $(x)^{\frac{1}{2}} + (y)^{\frac{1}{2}} = 1$}
\\
\\
\\
\\
\frac{d^2 y}{dx^2} =& \frac{1}{2x \sqrt{x}} \text{ or } y'' = \frac{1}{2x \sqrt{x}}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...