Sunday, September 15, 2013

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 24

a.) Suppose that $\displaystyle G(x) = 4x^2 - x^3$, find $G'(a)$ and use it to find an equation of the tangent lines to the curve $\displaystyle y = 4x^2 - x^3$ at the point $(2,8)$ and $(3, 9)$

Using the definition of the derivative of a function $G$ at a number $a$, denoted by $G'(a)$, is

$\qquad \displaystyle \qquad G'(a) = \lim_{h \to 0} \frac{G(a + h) - G(a)}{h}$

We have,


$
\begin{equation}
\begin{aligned}

\qquad G'(a) =& \lim_{h \to 0} \frac{4(a + h)^2 - (a + h)^3 - (4a^2 - a^3)}{h}
&& \text{Substitute $G(a + h)$ and $G(a)$}\\
\\
\qquad G'(a) =& \lim_{h \to 0} \frac{4(a^2 + 2ah + h^2) - (a^3 + 3a^2 h + 3ah^2 + h^3) - 4a^2 + a^3}{h}
&& \text{Expand the equation}\\
\\
\qquad G'(a) =& \lim_{h \to 0} \frac{\cancel{4a^2} + 8ah + 4h^2 - \cancel{a^3} - 3a^2h - 3ah^2 - h^3 - \cancel{4a^2} + \cancel{a^3}}{h}
&& \text{Combine like terms}\\
\\
\qquad G'(a) =& \lim_{h \to 0} \frac{8ah + 4h^2 - 3a^2h - 3ah^2 - h^3}{h}
&& \text{Factor the numerator}\\
\\
\qquad G'(a) =& \lim_{h \to 0} \frac{\cancel{h} (8a + 4h - 3a^2 - 3ah - h^2)}{\cancel{h}}
&& \text{Cancel out like terms}\\
\\
\qquad G'(a) =& \lim_{h \to 0} (8a + 4h - 3a^2 - 5ah - h^2) = 8a + 4(0) - 3a^2 - 3a(0) - (0)^2
&& \text{Evaluate the limit}

\end{aligned}
\end{equation}
$


$\qquad \fbox{$G'(a) = 8a - 3a^2$} \qquad $ Equation of the slope of the tangent line

Solving for the slope and equation of the tangent line at $(2,8)$


$
\begin{equation}
\begin{aligned}

G'(2) =& 8(2) - 3(2)^2
&& \text{Substitute value of $a$}\\
\\
G'(2) =& 4
&& \text{Slope of the tangent line at $(2, 8)$}

\end{aligned}
\end{equation}
$


Using Point Slope Form where the tangent line $y = G(x)$ at $(a, G(a))$


$
\begin{equation}
\begin{aligned}

y - G(a) =& G'(a)(x - a)
&& \\
\\
y - 8 =& 4 (x - 2)
&& \text{Substitute value of $a, G(a)$ and $G'(a)$}\\
\\
y =& 4x - 8 + 8
&& \text{Combine like terms}

\end{aligned}
\end{equation}
$


$\qquad \qquad \fbox{$y = 4x$} \qquad $ Equation of the tangent line at $(2, 8)$

Solving for the slope and equation of the tangent line at $(3, 9)$


$
\begin{equation}
\begin{aligned}

G'(3) =& 8(3) - 3 (3)^2
&& \text{Substitute value of $(a)$}\\
\\

G'(3) =& -3
&& \text{Slope of the tangent line at $(3, 9)$}\\
\\
\end{aligned}
\end{equation}
$


Using Point Slope Form where the tangent line $y = G(x)$ at $(a, G(a))$


$
\begin{equation}
\begin{aligned}

y - 9 =& -3(x - 3)
&& \text{Substitute the value of the $a, G(a)$ and $G'(a)$}\\
\\
y =& -3x + 9 + 9
&& \text{Combine like terms}

\end{aligned}
\end{equation}
$


$\qquad\fbox{$ y =-3x + 18$} \qquad $ Equation of the tangent line at $(3, 9)$

b.) Draw a graph of the curve and the tangent lines on the same screen.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...