Wednesday, October 30, 2013

Calculus of a Single Variable, Chapter 8, 8.5, Section 8.5, Problem 17

int(x^2-1)/(x^3+x)dx
(x^2-1)/(x^3+x)=(x^2-1)/(x(x^2+1))
Now let's create partial fraction template,
(x^2-1)/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)
Multiply equation by the denominator,
(x^2-1)=A(x^2+1)+(Bx+C)x
(x^2-1)=Ax^2+A+Bx^2+Cx
x^2-1=(A+B)x^2+Cx+A
Comparing the coefficients of the like terms,
A+B=1 ----------------(1)
C=0
A=-1
Plug the value of A in equation 1,
-1+B=1
B=2
Plug in the values of A,B and C in the partial fraction template,
(x^2-1)/(x(x^2+1))=-1/x+(2x)/(x^2+1)
int(x^2-1)/(x^3+x)dx=int(-1/x+(2x)/(x^2+1))dx
Apply the sum rule,
=int-1/xdx+int(2x)/(x^2+1)dx
Take the constant out,
=-1int1/xdx+2intx/(x^2+1)dx
Now evaluate both the integrals separately,
int1/xdx=ln|x|
Now let's evaluate second integral,
intx/(x^2+1)dx
Apply integral substitution: u=x^2+1
du=2xdx
=int1/u(du)/2
=1/2int1/udu
=1/2ln|u|
Substitute back u=x^2+1
=1/2ln|x^2+1|
int(x^2-1)/(x^3+x)dx=-ln|x|+2(1/2ln|x^2+1|)
Simplify and add a constant C to the solution,
=-ln|x|+ln|x^2+1|+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...