Monday, October 28, 2013

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 18

Evaluate the function $\displaystyle \lim \limits_{x \to -1} \frac{x^2 - 2x}{x^2 - x - 2}$ at the given numbers
$x = 0, -0.5, -0.9, -0.95, -0.99, -2, -1.5, -1.1, -1.01, -1.001$ and guess the value of the limit, if it exists.


Substituting all the given values of $x$


$
\begin{equation}
\begin{aligned}

\begin{array}{|c|c|}
\hline\\
x & f(x) \\
\hline\\
0 & 0 \\
-0.5 & -1 \\
-0.9 & -9 \\
-0.95 & -19 \\
-0.99 & -99 \\
-0.999 & -999 \\
-2 & 2 \\
-1.5 & 3 \\
-1.1 & 11 \\
-1.01 & 101 \\
-1.001 & 1001\\
\hline
\end{array}


\end{aligned}
\end{equation}
$



Based from the values in the table, we can conclude that the limit of the function does not exist
because of its difference between its values as $x$ approaches -1 from left and right.


$
\begin{equation}
\begin{aligned}
\displaystyle \lim \limits_{x \to -1} \frac{x^2 - 2x}{x^2 - x - 2} =& \frac{(-0.999999)^2 - 2 (-0.999999)}{(-0.999999)^2 - (-0.999999)-2} = -999999\\

\displaystyle \lim \limits_{x \to -1} \frac{x^2 - 2x}{x^2 - x - 2} =& \frac{(-1.000001)^2 - 2 (-1.000001)}{(-1.000001)^2 - (-1.000001)-2} = 1000001

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...