Monday, October 28, 2013

College Algebra, Chapter 7, 7.3, Section 7.3, Problem 8

Determine the inverse of the matrix and verify that $B^{-1} B = BB^{-1} = I_3$

where $\displaystyle B = \left[ \begin{array}{ccc}
1 & 3 & 2 \\
0 & 2 & 2 \\
-2 & -1 & 0
\end{array} \right]$

We first add the identity matrix to the right of our matrix

$\displaystyle \left[ \begin{array}{ccc|ccc}
1 & 3 & 2 & 1 & 0 & 0 \\
0 & 2 & 2 & 0 & 1 & 0 \\
-2 & -1 & 0 & 0 & 0 & 1
\end{array} \right]$

Using Gauss-Jordan Elimination

$\displaystyle R_3 + 2R_1 \to R_3$

$\left[ \begin{array}{ccc|ccc}
1 & 3 & 2 & 1 & 0 & 0 \\
0 & 2 & 2 & 0 & 1 & 0 \\
0 & 5 & 4 & 2 & 0 & 1
\end{array} \right]$


$\displaystyle \frac{1}{2} R_2$

$\left[ \begin{array}{ccc|ccc}
1 & 3 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & \displaystyle \frac{1}{2} & 0 \\
0 & 5 & 4 & 2 & 0 & 1
\end{array} \right]$


$\displaystyle R_3 - 5 R_2 \to R_3$

$\left[ \begin{array}{ccc|ccc}
1 & 3 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & \displaystyle \frac{1}{2} & 0 \\
0 & 0 & -1 & 2 & \displaystyle \frac{-5}{2} & 1
\end{array} \right]$

$\displaystyle - R_3$

$\left[ \begin{array}{ccc|ccc}
1 & 3 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & \displaystyle \frac{1}{2} & 0 \\
0 & 0 & 1 & -2 & \displaystyle \frac{5}{2} & -1
\end{array} \right]$

$\displaystyle R_2 - R_3 \to R_2$

$\left[ \begin{array}{ccc|ccc}
1 & 3 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & -2 & 1 \\
0 & 0 & 1 & -2 & \displaystyle \frac{5}{2} & -1
\end{array} \right]$

$\displaystyle R_1 - 2 R_3 \to R_1$

$\left[ \begin{array}{ccc|ccc}
1 & 3 & 0 & 5 & -5 & 2 \\
0 & 1 & 0 & 2 & -2 & 1 \\
0 & 0 & 1 & -2 & \displaystyle \frac{5}{2} & -1
\end{array} \right]$

$\displaystyle R_1 - 3 R_2 \to R_1$

$\left[ \begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 1 & -1 \\
0 & 1 & 0 & 2 & -2 & 1 \\
0 & 0 & 1 & -2 & \displaystyle \frac{5}{2} & -1
\end{array} \right]$

The right half is now $B^{-1}$

$\displaystyle B^{-1} = \left[ \begin{array}{ccc}
-1 & 1 & -1 \\
2 & -2 & 1 \\
-2 & \displaystyle \frac{5}{2} & -1
\end{array} \right]$

We calculate $BB^{-1}$ and $B^{-1} B$ and verify that both products give the identity matrix $I_3$


$
\begin{equation}
\begin{aligned}

BB^{-1} = \left[ \begin{array}{ccc}
1 & 3 & 2 \\
0 & 2 & 2 \\
-2 & -1 & 0
\end{array} \right]

\left[ \begin{array}{ccc}
-1 & 1 & -1 \\
2 & -2 & 1 \\
-2 & \displaystyle \frac{5}{2} & -1
\end{array} \right]

=&

\left[ \begin{array}{ccc}
1 \cdot (-1) + 3 \cdot 2 + 2 \cdot (-2) & \displaystyle 1 \cdot 1 + 3 \cdot (-2) \cdot \frac{5}{2} & 1 \cdot (-1) + 3 \cdot 1 + 2 \cdot (-1) \\
0 \cdot (-1) + 2 \cdot 2 + 2 \cdot (-2) & \displaystyle 0 \cdot 1 + 2 \cdot (-2) + 2 \cdot \frac{5}{2} & 0 \cdot (-1) + 2 \cdot 1 + 2 \cdot (-1) \\
-2 \cdot (-1) + (-1) \cdot 2 + 0 \cdot (-2) & \displaystyle -2 \cdot 1 + (-1) \cdot (-2) + 0 \cdot \frac{5}{2} & -2 \cdot (-1) + (-1) \cdot 1 + 0 \cdot (-1)
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]

\\
\\
\\

B^{-1} B =\left[ \begin{array}{ccc}
-1 & 1 & -1 \\
2 & -2 & 1 \\
-2 & \displaystyle \frac{5}{2} & -1
\end{array} \right]

\left[ \begin{array}{ccc}
1 & 3 & 2 \\
0 & 2 & 2 \\
-2 & -1 & 0
\end{array} \right]

=& \left[ \begin{array}{ccc}
-1 \cdot 1 + 1 \cdot 0 + (-1) \cdot (-2) & -1 \cdot 3 + 1 \cdot 2 + (-1) \cdot (-1) & -1 \cdot 2 + 1 \cdot 2 + (-1) \cdot 0 \\
2 \cdot 1 + (-2) \cdot 0 + 1 \cdot (-2) & 2 \cdot 3 + (-2) \cdot 2 + 1 \cdot (-1) & 2 \cdot 2 + (-2) \cdot 2 + 1 \cdot 0 \\
\displaystyle -2 \cdot 1 + \frac{5}{2} \cdot 0 + (-1) \cdot (-2) & \displaystyle -2 \cdot 3 + \frac{5}{2} \cdot 2 + (-1) \cdot (-1) & \displaystyle -2 \cdot 2 + \frac{5}{2} \cdot 2 + (-1) \cdot 0
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...