Wednesday, February 26, 2014

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 40

Solve the system $\left\{ \begin{array}{ccccc}
5x & -3y & +z & = & 6 \\
& 4y & -6z & = & 22 \\
7x & +10 y & & = & -13
\end{array} \right.$ using Cramer's Rule.

For this system we have


$
\begin{equation}
\begin{aligned}

|D| =& \left| \begin{array}{ccc}
5 & -3 & 1 \\
0 & 4 & -6 \\
7 & 10 & 0
\end{array} \right| = 5 \left[ 4 \cdot 0 - (-6) \cdot 10 \right] - (-3) \left[ 0 \cdot 0 - (-6) \cdot 7 \right] + 1 (0 \cdot 10 - 4 \cdot 7) = 398
\\
\\
|D_{x}| =& \left| \begin{array}{ccc}
6 & -3 & 1 \\
22 & 4 & -6 \\
-13 & 10 & 0
\end{array} \right| = 6 \left[ 4 \cdot 0 - (-6) \cdot 10 \right] - (-3) \left[ (-6) \cdot (-13) - 22 \cdot 0 \right] + 1 \left[ 22 \cdot 10 - 4 \cdot (-13) \right] =398
\\
\\
|D_{y}| =& \left| \begin{array}{ccc}
5 & 6 & 1 \\
0 & 22 & -6 \\
7 & -13 & 0
\end{array} \right| = 5 \left[ 22 \cdot 0 - (-6) \cdot (-13) \right] - 6 \left[ (-6) \cdot 7 - 0 \cdot 0 \right] + 1 \left[ 0 \cdot (-13) - 22 \cdot 7 \right]= -796
\\
\\
|D_z| =& \left| \begin{array}{ccc}
5 & -3 & 6 \\
0 & 4 & 22 \\
7 & 10 & -13
\end{array} \right| = 5 \left[ 4 \cdot (-13) - 22 \cdot 10 \right] - (-3) \left[ 0 \cdot (-13) - 22 \cdot 7 \right] + 6 \left( 0 \cdot 10 - 4 \cdot 7 \right] = -1190

\end{aligned}
\end{equation}
$


The solution is


$
\begin{equation}
\begin{aligned}

x =& \frac{|D_x|}{|D|} = \frac{398}{398} = 1
\\
\\
y =& \frac{|D_y|}{|D|} = \frac{-796}{398} = -2
\\
\\
z =& \frac{|D_z|}{|D|} = \frac{-1990}{398} = -5
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...