Saturday, February 15, 2014

Single Variable Calculus, Chapter 3, 3.9, Section 3.9, Problem 16

a.) Determine the differential $dy$ of $\displaystyle y = \frac{1}{x + 1}$

Using Differential Approximation

$dy = f'(x) dx$


$
\begin{equation}
\begin{aligned}

\frac{dy}{dx} =& \frac{d}{dx} \left( \frac{1}{x + 1} \right)
\\
\\
dy =& \left[ \frac{(x + 1) \displaystyle \frac{d}{dx} (1) - (1) \frac{d}{dx} ( x + 1) }{(x + 1)^2} \right] dx
\\
\\
dy =& \left[ \frac{(x + 1) (0) - (1)(1)}{(x + 1)^2} \right] dx
\\
\\
dy =& \frac{-1}{(x + 1)^2} dx

\end{aligned}
\end{equation}
$


b.) Find $dy$ for $x = 1$ and $\displaystyle dx = -0.01$


$
\begin{equation}
\begin{aligned}

dy =& \left[ \frac{-1}{(1 + 1)^2} \right] (-0.01)
\\
\\
dy =& \left[ \frac{-1}{(2)^2} \right] (-0.01)
\\
\\
dy =& \frac{0.01}{4}
\\
\\
dy =& \frac{1}{400} \text{ or } 0.0025

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...