Friday, February 14, 2014

Intermediate Algebra, Chapter 3, Test, Section Test, Problem 14

Determine an equation of the line "through $(-7,2)$ and parallel to $3x + 5y = 6$", and write it in the following form:

a.) Slope-intercept form

We write the equation $3x + 5y = 6$ in slope-intercept form


$
\begin{equation}
\begin{aligned}

3x + 5y =& 6
&& \text{Given equation}
\\
5y =& -3x + 6
&& \text{Subtract each side by $3x$}
\\
y =& - \frac{3}{5}x + \frac{6}{5}
&& \text{Slope-intercept form}

\end{aligned}
\end{equation}
$


The slope is $\displaystyle - \frac{3}{5}$.

Using Point Slope Form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m(x - x_1)
&& \text{Point Slope Form}
\\
\\
y - 2 =& - \frac{3}{5} [x - (-7)]
&& \text{Substitute } x = -7, y = 2 \text{ and } m = - \frac{3}{5}
\\
\\
y - 2 =& - \frac{3}{5}x - \frac{21}{5}
&& \text{Distributive Property}
\\
\\
5y - 10 =& -3x - 21
&& \text{Multiply each side by $5$}
\\
\\
5y =& -3x - 11
&& \text{Add each side by $10$}
\\
\\
y =& - \frac{3}{5}x - \frac{11}{5}
&& \text{Divide each side by $5$}


\end{aligned}
\end{equation}
$



b.) Standard Form


$
\begin{equation}
\begin{aligned}

& y = - \frac{3}{5}x - \frac{11}{5}
&& \text{Slope Intercept Form}
\\
\\
& \frac{3}{5}x + y = - \frac{11}{5}
&& \text{Standard Form}
\\
& \text{or}
&&
\\
& 3x + 5x = -11
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...