Tuesday, February 4, 2014

Single Variable Calculus, Chapter 2, 2.1, Section 2.1, Problem 7

The table below shows the position of a cyclist at each time period.


$
\begin{equation}
\begin{aligned}

\begin{array}{|c|c|c|c|c|c|c|}
\hline\\
t( \text{seconds}) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
s( \text{meters}) & 0 & 1.4 & 5.1 & 10.7 & 17.7 & 25.8\\
\hline
\end{array}

\end{aligned}
\end{equation}
$



a. Find the average velocity over the given time intervals:


$
\begin{equation}
\begin{aligned}

&\text{ (i) } [1, 3] & \text{ (ii) } [2, 3]\\
&\text{ (iii) } [3, 5] & \text{ (iv) } [3, 4]
\end{aligned}
\end{equation}
$





$
\begin{equation}
\begin{aligned}

\begin{array}{|c|c|c|c|c|c|}
\hline\\
& t_1 & t_2 & S_1 & S_2 & V_{ave} = \frac{S_2-S_1}{t_2-t_1} \\
\hline\\
\text{ (i) } & 1 & 3 & 1.4 & 10.7 & 4.65 \\
\hline\\
\text{ (ii) } & 2 & 3 & 5.1 & 10.7 & 5.6 \\
\hline\\
\text{ (iii) } & 3 & 5 & 10.7 & 25.8 & 7.55 \\
\hline\\
\text{ (iv) } & 3 & 4 & 10.7 & 17.7 & 7\\
\hline
\end{array}


\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\text{ (i) } V_{ave} =& \frac{10.7-1.4}{3-1} = 4.65\\
\text{ (ii) } V_{ave} =& \frac{10.7 - 5.1}{3 - 2} = 5.6\\
\text{ (iii) } V_{ave} =& \frac{25.8-10.7}{5-3} = 7.55\\
\text{ (iv) } V_{ave} =& \frac{17.7 - 10.7}{4-3} = 7
\end{aligned}
\end{equation}
$






b. Estimate the instantaneous velocity when $t=3$ using the graph of $s$ as a function of $t$.








Referring to the graph, the instantaneous velocity when $t=3$ is approximately equal to $\displaystyle 6.6 \frac{m}{s}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...