Monday, March 3, 2014

int sqrt((5-x)/(5+x)) dx Use integration tables to find the indefinite integral.

Indefinite integral follows the formula: int f(x) dx = F(x)+C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as constant of integration.
 The given integral problem: int sqrt ((5-x)/(5+x))dxresembles one of the formulas from the integration table. It follows the integration formula for rational function with roots as:
int sqrt(x/(a-x)) =-sqrt(x(a-x)) - a* arctan(sqrt(x(a-x))/(x-a))+C
For easier comparison, we may apply u-substitution by letting: u =5-x rearrange into x = 5-u .
The derivative of u will be du = -1 dx rearrange into -du = dx .
Plug -in the value on the integral problem, we get:
int sqrt ((5-x)/(5+x)) dx =int sqrt (u/(5+(5-u)) )* (-du)
                        =int -sqrt (u/(5+5-u)) du
                        =int -sqrt (u/(10-u)) du
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int -sqrt (u/(10-u)) du=(-1)int sqrt (u/(10-u)) du
By comparing "a-x " with "10-u ", we determine the corresponding value: a=10 .
Applying the aforementioned formula for rational function with roots, we get:
(-1)int sqrt (u/(10-u)) du = (-1) *[-sqrt(u(10-u)) - 10* arctan(sqrt(u(10-u))/(u-10))]+C
            =sqrt(u(10-u)) + 10* arctan(sqrt(u(10-u))/(u-10))+C
Plug-in u =5-x on sqrt(u(10-u)) + 10* arctan(sqrt(u(10-u))/(u-10))]+C , we get the indefinite integral as:
int sqrt ((5-x)/(5+x)) dx =sqrt((5-x)(10-(5-x))) + 10* arctan(sqrt((5-x)(10-(5-x)))/((5-x)-10))+C
=sqrt((5-x)(10-5+x)) + 10* arctan(sqrt((5-x)(10-5+x))/(5-x-10))+C
=sqrt((5-x)(5+x)) + 10 arctan(sqrt((5-x)(5+x))/(-x-5))+C
= sqrt(25-x^2) + 10 arctan(sqrt(25-x^2)/(-x-5))+C                            

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...