Thursday, March 27, 2014

Intermediate Algebra, Chapter 2, 2.1, Section 2.1, Problem 24

Solve the equation $-6x + 2x - 11 = -2(2x - 3) + 4$, and check your solution. If applicable, tell whether the equation is an identity or contradiction.


$
\begin{equation}
\begin{aligned}

-6x + 2x - 11 =& -2(2x - 3) + 4
&& \text{Given equation}
\\
-6x + 2x - 11 =& -4x + 6 + 4
&& \text{Distributive property}
\\
-4x - 11 =& -4x + 10
&& \text{Combine like terms}
\\
-4x + 4x =& 10 + 11
&& \text{Add $(4x+11)$ from each side}
\\
0 =& 21
&& \text{False}

\end{aligned}
\end{equation}
$


Since the result, $0 = 21$, is false, the equation has no solution. So the equation $-6x + 2x - 11 = -2(2x - 3)+4$ is a contradiction.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...