Wednesday, December 10, 2014

Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 36

We have to evaluate the integral: \int \frac{2x-5}{x^2+2x+2}dx
We can write the integral as:
\int \frac{2x-5}{x^2+2x+2}dx=\int\frac{2x-5}{(x+1)^2+1}dx
Let x+1=t
So, dx=dt
Now we can write the integral as:
\int \frac{2x-5}{(x+1)^2+1}dx=\int \frac{2(t-1)-5}{t^2+1}dt
=\int \frac{2t-7}{t^2+1}dt
=\int \frac{2t}{t^2+1}dt-\int\frac{7}{t^2+1}dt --------------->(1)

Now we will first evaluate the integral \int \frac{2t}{t^2+1}dt

Let t^2+1=u
So, 2tdt=du
Hence we can write,
\int \frac{2tdt}{t^2+1}=\int \frac{du}{u}
=ln(u)
=ln(t^2+1)

Now we will evaluate the second integral : \int \frac{7}{t^2+1}dt
\int \frac{7}{t^2+1}dt=7\int \frac{1}{t^2+1}dt
=7tan^{-1}(t)

Substituting both these integral results in (1) we get,
\int \frac{2x-5}{x^2+2x+2}dx=ln(t^2+1)-7tan^{-1}(t)+C where C is a constant
=ln((x+1)^2+1)-7tan^{-1}(x+1)+C
=ln(x^2+2x+2)-7tan^{-1}(x+1)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...